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Abstract—Graphics processing units (GPUs) are important
components of modern computing devices for not only graphics
rendering, but also efficient parallel computations. However,
their security problems are ignored despite their importance
and popularity. In this paper, we first perform an in-depth
security analysis on GPUs to detect security vulnerabilities. We
observe that contemporary, widely-used GPUs, both NVIDIA’s
and AMD’s, do not initialize newly allocated GPU memory
pages which may contain sensitive user data. By exploiting
such vulnerabilities, we propose attack methods for revealing
a victim program’s data kept in GPU memory both during its
execution and right after its termination. We further show the
high applicability of the proposed attacks by applying them to
the Chromium and Firefox web browsers which use GPUs for
accelerating webpage rendering. We detect that both browsers
leave rendered webpage textures in GPU memory, so that we
can infer which webpages a victim user has visited by analyzing
the remaining textures. The accuracy of our advanced inference
attack that uses both pixel sequence matching and RGB
histogram matching is up to 95.4%.

I. INTRODUCTION

This work considers how attackers can disclose sensi-

tive data kept in graphics processing unit (GPU) memory.

We aim to obtain rendered webpage textures to uncover

webpages a victim user has visited. We successfully reveal

such data from modern GPUs (e.g., NVIDIA and AMD

GPUs) when we enable GPU-accelerated webpage rendering

of recent web browsers (e.g., Chromium and Firefox). For

example, Figure 1 shows the Google logo image of http://

google.com and a partial dump of rendered webpage textures

extracted from an NVIDIA GPU used by the Chromium

web browser. Although the GPU has rearranged the textures

according to its undocumented hardware characteristics, we

can infer that the dump originates from the webpage because

their color patterns are similar. Especially, our combined

matching attack can successfully infer up to 95.4% of ran-

domly visited 100 front pages of Alexa Top 1000 websites

when a victim uses the Chromium web browser with an

NVIDIA GPU (details are in Section V.)

GPUs are important and powerful components of con-

temporary computing devices. Personal computing devices,

including desktops, laptops, and smartphones, use GPUs

for supporting various graphics applications, e.g., graph-

ical user interface (GUI), multimedia players, and video

games. Large-scale computing devices, including worksta-

tions, servers, and clusters, also use GPUs for energy-

(a) Google logo image.

(b) Partial dump of Google webpage textures.

Figure 1. Google logo and partial dump of Google webpage textures
extracted from the Chromium web browser with an NVIDIA GPU.

efficient, massive parallel computations. GPUs utilize a large

number of processing cores and a large amount of indepen-

dent memory for efficiently processing graphics operations

and computational workloads. For example, an NVIDIA

Kepler GPU can have up to 2880 cores and 6 GB of memory,

and its floating-point operation performance is nine times

better than that of the recent CPUs [1], [2].

Programmers can use two types of application program-

ming interfaces (APIs) to access GPUs: graphics APIs

(e.g., DirectX [3] and OpenGL [4]) and computing APIs

(e.g., CUDA [2] and OpenCL [5]). First, the graphics APIs

provide functions for graphics operations, such as projection,

shading, and texture mapping. Second, the computing APIs

provide functions for non-graphics applications, such as

financial, medical, or weather data analyses [6], database

query optimizations [7], [8], packet routing [9], intrusion de-

tection systems [10], [11], and cryptographic engines [12]–

[17].

The most significant differences between the graphics

APIs and the computing APIs are sharing and memory man-

ageability. First, the computing APIs allow different users

to share the same GPU, whereas the graphics APIs only

support a single user. A number of users can share the same

GPU using the computing APIs in a time-sharing fashion,

as (1) the computing APIs demand no dedicated screens

and (2) current GPUs only support sequential execution of



different GPU processes [18]. Although some techniques

(e.g., VirtualGL [19]) allow remote users to share the same

GPU when using the graphics APIs, they warn users of

potential security problems (e.g., logging keystrokes and

reading back images through an X server).

Second, while GPU drivers manage GPU memory with

the graphics APIs, programmers can manually manage GPU

memory with the computing APIs, including allocations,

CPU-GPU data transfers, and deallocations. GPUs have

several types of memory (e.g., global, local, and private

memories), and programmers can control them using the

computing APIs except some graphics-related memories

(e.g., framebuffer and z-buffer). In contrast, the graphics

APIs provide no functions to manage such memories while

providing a set of optimized functions to perform memory-

efficient graphics operations.

Unfortunately, the sharing and high memory manageabil-

ity of the computing APIs may incur critical security threats

because GPUs do not initialize newly-allocated memory

buffers [20]. Although numerous studies consider such an

uninitialized memory problem in operating systems [21]–

[24], no study deals with the uninitialized GPU memory

problem. If similar security threats exist with the computing

APIs, the threats have much larger impact as multiple users

share the same GPU.

In this paper, we first perform an in-depth security analysis

on GPUs regarding their architectures and computing APIs

to reveal any potential security threats. We identify that

the computing APIs have a serious uninitialized memory

problem because they (1) do not clear newly allocated

memory pages, (2) have memory types that programmers

cannot delete, and (3) have in-core memory without security

mechanisms.

Second, we develop effective security attacks on GPUs

applicable to the most widely used GPUs, NVIDIA and

AMD GPUs, by exploiting the revealed security threats. Our

attacks can disclose sensitive data kept in GPU memory of

a victim program both during its execution and right after

its termination.

Third, we demonstrate the high applicability of our attacks

by inferring browsing history of the two most widely used

web browsers, the Chromium and Firefox web browsers.

Both browsers support GPU-accelerated webpage render-

ing acceleration, which uploads webpage textures to GPU

memory to increase rendering speed. Our attacks can extract

rearranged webpage textures of both browsers from NVIDIA

and AMD GPUs.

Lastly, we propose advanced inference attacks which can

correctly infer the original webpage of rearranged webpage

textures with up to 95.4% accuracy. The proposed inference

attacks compare the textures with either known textures or

known webpage snapshots to identify the original webpage

using three matching methods: (1) pixel sequence matching,

(2) RGB histogram matching, and (3) combined matching.

To the best of our knowledge, our work is the first security

analysis and attacks targeting GPUs. In summary, our work

makes the following contributions:

• Novel and crucial attack target. Our work expands

the scope of security research to a novel attack target,

GPUs. Despite their popularity and importance, there

is no in-depth study of their security problems before

this work.

• Complete in-depth study. We present a complete in-

depth security analysis on GPUs regarding not only

their architectures, but also their computing APIs. We

identify that all kinds of GPU memories accessible by

the computing APIs has security problems.

• Strong and widely-applicable attacks. We demon-

strate our attacks using the most widely-used GPUs

and GPU-assisted applications: NVIDIA and AMD

GPUs, and the Chromium and Firefox web browsers.

Especially, our attacks accurately infer browsing history

by up to 95.4%.

The remainder of this paper is organized as follows. In

Section II we give an in-depth security analysis on GPUs

and motivate our work. In Section III we explain the threat

model. In Section IV we explain our attacks to disclose

sensitive data remaining in GPU memory. In Section V we

propose our inference attacks that identify browsing history

of web browsers using GPUs. In Section VI we discuss

possible countermeasures against the proposed attacks. In

Section VII we summarize related work of this paper. Lastly,

we conclude the paper in Section VIII.

II. BACKGROUND AND SECURITY CONCERNS

In this section, we first give a brief overview on GPUs in

terms of their architectures and programming models. Then,

we motivate our work by presenting inevitable security

concerns rising from the nature of GPUs. We use the

OpenCL terminology [5] throughout the paper.

A. GPU Architecture

A GPU consists of (1) a compute device for executing in-

structions and (2) a compute device memory for storing data

used by the compute device. Figure 2 shows the high-level

diagram of a typical OpenCL-capable GPU architecture. The

compute device consists of several compute units (CUs) and

a global/constant memory data cache shared by all CUs.

Each CU consists of processing elements (PEs), also known

as GPU cores, and per-CU local memory shared by the PEs.

Each PE also has per-PE private memory.

The compute device memory consists of two memory

types: global memory and constant memory. The read-write

global memory is for storing GPU computation results. The

read-only constant memory is for storing codes executed by

the compute device and read-only data.



Figure 2. High-level architecture of an OpenCL-capable GPU.

B. GPU Computing Model

In a typical GPU computing model, GPUs run the

programmer-defined GPU contexts, similar to CPUs. Pro-

grammers construct a GPU context by writing kernels, mem-
ory management, and command queues using the computing

APIs. Kernels are the functions written to run on GPUs.

Memory management includes GPU memory allocations,

data transfers between CPU and GPU memories, and GPU

memory deallocations. Command queues hold the com-

mands to be executed on GPUs. Both kernels and memory

management are the commands. A typical execution of a

GPU context is as follows: programmers queue (1) GPU

memory allocation commands, (2) CPU to GPU data transfer

commands, (3) kernel execution commands, (4) GPU to

CPU data transfer commands, and (5) GPU memory deallo-

cation commands in a command queue. When programmers

queue a kernel execution command to the command queue,

a GPU driver passes the pointers of allocated GPU memory

accessible by the kernel to the GPUs through the kernel

arguments. The GPUs execute all commands in a command

queue in the first-in, first-out (FIFO) manner.

C. OpenGL and Textures

We briefly explain OpenGL, a popular graphics APIs

widely supported by various operating systems, such as

Windows, Linux, Android, and iOS. Among its several

functions, we focus on texture functions as textures are

sensitive image data of victims.

Texture mapping is a technique to make objects look

realistic by mapping images or colors to 2D/3D objects.

OpenGL provides a set of functions for texture mapping,

such as glGenTextures() for generating a texture ob-

ject, glBindTexture() for loading the texture object,

and glTexImage2D() for specifying an image array of

the texture object. Programmers either load an image file

or generate some image data for glTexImage2D(). Once

the texture object is uploaded to GPU memory, programmers

can invoke glTexCoord() to coordinate the texture object

while drawing objects.

Textures reside in the global memory, and program-

mers can delete textures no longer used by calling

glDeleteTextures() to increase available global

memory size. This function, however, does not initialize the

corresponding memory blocks. Accordingly, an attacker can

read the uninitialized textures which remain in the global

memory after glDeleteTextures().

D. Security Concerns

We now present three major security concerns of GPUs

based on our analysis on GPU architectures and APIs. We

take advantage of the major security concerns to perform

our attacks presented in Section IV.

1) Lack of Memory Page Initialization Upon New Al-
location: We identify a crucial security problem of GPU

memory—GPUs do not initialize the contents of newly

allocated memory pages that possibly contain sensitive data.

The new owner can access the sensitive data remaining in

the memory pages if the previous owner does not clear

it. Modern operating systems have suffered from similar

problems, but they solve the problems by filling new mem-

ory pages with zeros before delivering them to user space

processes [25]. However, we detect that GPUs do not provide

such a countermeasure. Therefore, we define the lack of

memory page initialization upon new allocation as the first

major security concern of GPUs.

2) Unerasable Memory: We identify that a portion of

GPU memory is neither erasable by users nor automatically

erased by GPUs. As explained in Section II-A, GPUs

have several types of memory. While programmers can

delete the contents of most types of memory, GPUs prevent

programmers from erasing the contents of a few types of

memory containing sensitive data (e.g., constant data, kernel

codes, and call-by-value arguments). Moreover, we detect

that GPUs do not automatically delete such contents even

when they are no longer necessary. Thus, protecting sensitive

data kept in the unerasable memory becomes the second

major security concern of GPUs.

3) Programmer-managed Memory: We identify that

threads originating from a kernel running on a CU can

access the contents of other kernels, stored in the local

and private memories of the CU. GPU computing models

allow programmers to manually manage the local and private

memories to optimize performance [2], [5]. For security,

GPUs should disallow threads of a kernel to access the

contents stored in the local and private memories, written by

threads of other kernels. But we detect that current GPUs

provide no isolation mechanism for the local and private

memories. Regarding that GPU-accelerated applications use

the local and private memories for storing sensitive data

(e.g., secret keys with libgpucrypto [12]), lack of such

a prevention becomes the third major security concern of

GPUs.



III. SYSTEM AND ATTACK MODELS

We assume a system that equips a GPU for graphics

operations and computations. The system is a multi-user

system so that a number of users can share the equipped

GPU. A victim is a normal user of the system who often

executes programs using the GPU, such as 3D rendering

software, web browsers, and financial data analysis tools.

The victim occupies screens to locally use the graphics

APIs. An attacker is another normal user of the system

(a local attacker) who cannot attack the victim at the

operating system level due to insufficient privilege as many

attacks dealing with multi-user systems assume [26], [27].

The attacker, however, can freely access the GPU via the

computing APIs, as any user of the system can use the APIs.

Consequently, the attacker attempts to exploit the GPU to

disclose the victim’s sensitive data possibly remaining in

GPU memory.

In addition, we consider a remote GPU system using

VirtualGL [19], which is basically the same as the preceding

system. Here, a victim has a right to use VirtualGL [19] to

remotely use the graphics APIs, whereas an attacker has no

right to use VirtualGL. Therefore, the attacker also need to

exploit the GPU to attack the victim’s data kept in GPU

memory. As the attack methods for both systems are the

same, we do not distinguish them in this work.

IV. DISCLOSING GPU MEMORY

In this section, we explain our attacks to disclose sensitive

data in GPU memory exploiting the uninitialized memory

problem. We propose two attacks to steal sensitive data

of a victim program both at the right after its termination

and during its execution. We further discuss real attacks on

security-sensitive GPU programs in the later section.

A. Basic Attack

We identify that current GPUs have uninitialized memory

problems by performing a basic attack that attempts to

read the entire global memory after a victim GPU context

terminates. First, we execute a simple victim program that

writes 1 GB of 0x11111111 on the 3 GB of global

memory of an NVIDIA GeForce GTX 780 GPU. Right after

the victim program terminates, we execute a simple attack

program that reads the entire global memory. When no active

GPU program exists, the memory dump read by the attack

program contains not the victim’s data but dummy data. We

expect that a GPU driver turns GPUs to a sleep mode for

saving power, so that the data written in the global memory

disappear. In contrast, when at least one active GPU program

(e.g., a Gnome desktop) exists, the memory dump contains

not only the 1 GB data written by the victim program,

but also other important data, such as a kernel code. We

expect that uncleared data remain in GPU memory, as the

GPU driver does not automatically delete them to avoid

possible performance degradation [20]. We perform a similar
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(c) End-of-Kernel (EoK) attack.

Figure 3. Overview of proposed attacks.

attack on the local and private memories, and detect that

GPUs also do not automatically clear them. Accordingly, we

conclude that current GPUs ignore the uninitialized memory

problems.

B. Overview of Advanced Attacks

We introduce attacks to acquire data stored in the global,

local, and private memories of GPUs. We consider two

attack points: the end of the GPU context and the end

of the GPU kernel. Figure 3 provides an overview of the

proposed attacks. Normal GPU execution flow creates a

GPU context (CC), allocates GPU memory (AM), copies

data from CPU to GPU (HD), executes a kernel (EK), copies

back data from GPU to CPU (DH), frees GPU memory

(FM), and destroys context (DC) (Figure 3a). In the case

of graphics applications, copying results to video frame

buffer replaces DH. When the victim follows the same

execution flow, the End-of-Context (EoC) attack and the

End-of-Kernel (EoK) attack steal data at different moments.

The EoC attack dumps all GPU memory after the victim

frees its memory (Figure 3b). The EoK attack steals the local

and private memories of the victim’s kernel right after the

victim’s kernel terminates (Figure 3c). We mainly explain

the proposed attacks using NVIDIA GPUs, and discuss

differences between NVIDIA and AMD GPUs in terms of

performing the proposed attacks.

C. End-of-Context (EoC) Attack

1) Attack Description: The EoC attack aims to obtain

data released after the destruction of a victim program’s

GPU context. A GPU program can either explicitly de-

stroy its GPU context by calling API functions (e.g.,

clReleaseContext() and cudaDeviceReset()) or

implicitly destroy its GPU context by its termination. The

main target of this attack is the results of kernel computa-

tions, such as decrypted plaintext and rendered images. If

a victim program does not clear its global memory before



Algorithm 1 End-of-Context Attack

Input: own← the size of memory occupied by attacker
1: context← createGPUContext()
2: total← getTotalMemoryInfo()
3: available← getAvailableMemoryInfo()
4: while available+ own = total do // no victim exists
5: sleep()
6: available← getAvailableMemoryInfo()
7: end while
8: available← getAvailableMemoryInfo()
9: while available+ own �= total do // victim works

10: sleep()
11: available← getAvailableMemoryInfo()
12: end while
13: alloc← allocateMemory(total − own) // victim exits
14: memoryCopyDeviceToHost(alloc)
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Figure 4. Changes of the available global memory size according to a
victim program’s activities. The total size of global memory is 2687 MB
(NVIDIA Tesla C2050 GPU).

releasing its GPU context, an attacker can easily obtain

the computation results using this attack. Furthermore, we

observe that the GPU context destruction also releases other

important data, such as kernel code, constant data, and call-
by-value arguments of kernels. Current GPUs provide no

methods to delete such data.

2) Attack Procedure: Algorithm 1 shows the EoC at-

tack. NVIDIA GPUs provide functions to examine the

available and total GPU memory size of the GPUs, such

as cudaMemGetInfo(). By continuously examining the

changes in the available memory size using such func-

tions, an attacker can discern whether a victim program

destroyed its GPU context. Figure 4 shows the changes in

available memory size according to the victim’s activities.

The attacker can learn when the victim starts to use GPUs,

allocates and deallocates global memory, and exits from the

GPUs by leveraging the memory usage history. If the victim

no longer uses GPUs, the attacker tries to dump the entire

global memory of the GPUs.

3) Reducing Analysis Space: We suggest a technique

to reduce the analysis space in memory dumps because

(1) usual victim programs only use a small portion of the

global memory and (2) investigating several gigabytes of the

global memory requires unnecessary efforts. Our technique

is to fill the global memory with sufficiently long binary

sequences before a victim comes and ignore the sequences

Algorithm 2 End-of-Context Attack on Multiple Victims

Input: own← the size of memory occupied by attacker
1: context← createGPUContext()
2: total← getTotalMemoryInfo()
3: available← getAvailableMemoryInfo()
4: while available+ own = total do // no victim exists
5: sleep()
6: available← getAvailableMemoryInfo()
7: end while
8: available← getAvailableMemoryInfo()
9: while available+ own �= total do // victims work

10: sleep()
11: avail new ← getAvailableMemoryInfo()
12: if avail new > available then // victims deallocate

memory
13: alloc← allocateMemory(avail new)
14: if kernelDetectInstruction(alloc) = true then
15: memoryCopyDeviceToHost(alloc) // only

copy memory with code
16: end if
17: fillMemory(alloc)
18: deallocateMemory(alloc)
19: end if
20: available← getAvailableMemoryInfo()
21: end while
22: alloc← allocateMemory(total − own) // victims exit
23: memoryCopyDeviceToHost(alloc)

when analyzing dumps of the global memory. We modify

the attack program to fill the global memory of a GPU

with a predefined 1024-bit integer before a victim program

arrives. When analyzing memory dump files, we ignore the

1024-bit integer in the files. The probability that a victim

program has the predefined 1024-bit integer in its memory

is negligible. We test this technique with simple victim

programs allocating 64, 128, 256, 512, and 1024 MB of

global memory, respectively. On average, the size of analysis

space is only 1.3 MB larger than the allocated memory for

storing kernel codes and constant data.

4) Multiple Victims: The EoC attack in Algorithm 1 does

not work when multiple victims are consecutively using the

GPUs. To solve the problem, we modify the attack to deal

with multiple victims (Algorithm 2). Whenever the size of

available GPU memory increases, this algorithm attempts to

allocate all the available memory to obtain the recently deal-

located memory. However, dumping all the available mem-

ory whenever deallocations occur requires much storage and

transmission overhead. The algorithm avoids the overhead

by launching a kernel to verify whether the recent memory

deallocation is due to the destruction of a GPU context.

It is possible by checking whether the deallocated memory

includes instructions (e.g., 0x85800000001c3c02 which

is the NOP instruction of NVIDIA Kepler GPUs). Lastly, the

algorithm copies memory containing instructions to the host

and fills the memory with a dummy value before releasing

it, to avoid redundant detections of the same instructions.



Algorithm 3 End-of-Kernel Attack

Input: own← the size of memory occupied by attacker
1: context← createGPUContext()
2: total← getTotalMemoryInfo()
3: available← getAvailableMemoryInfo()
4: while available+ own = total do // no victim exists
5: sleep()
6: available← getAvailableMemoryInfo()
7: end while
8: available← getAvailableMemoryInfo()
9: while available+ own �= total do // victim works

10: local priv ← kernelReadLocalPrivMem()
11: memoryCopyDeviceToHost(local priv)
12: avail new ← getAvailableMemoryInfo()
13: if avail new > available and avail new+own �= total

then // victim releases some global memory
14: alloc← allocateMemory(avail new)
15: memoryCopyDeviceToHost(alloc)
16: deallocateMemory(alloc)
17: end if
18: available← avail new
19: end while

D. End-of-Kernel (EoK) Attack

1) Attack Description: The EoK attack aims to obtain

intermediate data generated when GPU kernels of a victim

program are executing. GPU computing models discourage

long-running GPU kernels because current GPUs do not

support preemptive scheduling. Long-running GPU pro-

grams thereby use either several kernels or the same kernel

repeatedly and process the intermediate results. The main

targets of this attack are frequently accessed data stored in

the per-CU local memory and the per-PE private memory.

For example, libgpucrypto, a cryptography library of

SSLShader [12], loads secret keys, AES S-box, and the p
and q values of RSA into the local and private memories

in order to increase performance. If a victim program does

not clear the local and private memories at the end of each

kernel execution, an attacker can easily read the data.

2) Attack Procedure: Algorithm 3 shows the EoK attack.

In this algorithm, we execute kernels that attempt to read

the local and private memories of a GPU, and copy the

results to CPU memory. We also check the differences

in available memory size to determine whether a victim

program dynamically releases some of its global memory.

When we detect such memory release, we also attempt to

dump it. The loop for reading the local and private memories

terminates when the victim program exits from the GPU, and

we lastly perform the EoC attack.

3) L1 Data Cache of NVIDIA GPUs: The EoK attack

can also acquire sensitive data kept in the L1 data cache

of NVIDIA GPUs. NVIDIA GPUs utilize a portion of their

per-CU local memory as an L1 data cache of the global

memory. Programmers can flexibly configure the size of

the local memory and the L1 data cache: 16 KB for the

local memory and 48 KB for the L1 data cache or vice
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Figure 5. Memory layouts of configurable local memory and L1 data
cache (NVIDIA GPUs).

// prepare global memory filled with zeros
int *zero_mem;
cudaMalloc((void**)&zero_mem, 49152);
cudaMemset(zero_mem, 0, 49152);
…

__device__ void flushL1(int *zero_mem) {
for (int i=0; i < 49152/sizeof(int); ++i) {
zero_mem[i] = zero_mem[49152/sizeof(int)-(i+1)];

}
} 

Figure 6. A sample kernel to flush L1 data cache.

versa. However, this configuration allows attackers to read

the 32 KB overlapped region used by the L1 data cache of

a victim program.

Figure 5 shows the layouts of the local memory and

the L1 data cache, verified by conducting the following

experiment. We first execute a victim program that writes

zeros into its 16 KB of local memory and reads 512 MB of

global memory filled with 0x11111111. We then execute

an attack program that reads and dumps its 48 KB of

local memory. We detect that the lower 16 KB of the local

memory is filled with zeros and the upper 32 KB of the local

memory is filled with 0x11111111. Therefore, attackers

can obtain the lower 2/3 of the L1 data cache from a victim

GPU program if the victim uses a 48 KB L1 data cache.

A GPU program can clear cached data by reading the

contiguous 48 KB global memory block filled with a dummy

value because the L1 data cache of NVIDIA GPUs is a set-

associative, write-evict cache [2], [28]. Figure 6 shows an

example of a CUDA code that flushes the L1 data cache.

It prepares a 48 KB array filled with zeros in the global

memory in advance and reads zeros from the array to clear

the L1 data cache.

4) Multiple Victims: The limitation of the EoK attack is

that it can only read the local and private memories of a

victim kernel which uses the GPU just before an attack

kernel. This implies that when multiple victim programs

compete to use a GPU, the attack kernel can only see one

of their data kept in local and private memories.



Table I
PLATFORMS WE TEST THE PROPOSED ATTACKS.

GPU (Generation) GPU Mem. Driver OS Kernel CPU CPU Mem.
NVIDIA
GeForce 210 (GT200) 0.5 GB 319.37 Ubuntu 12.04 3.5.0 Intel Pentium Dual-Core E6300 4 GB
Tesla C2050 (Fermi) 2.6 GB 304.108 CentOS 6.3 2.6.32 Intel Xeon X5650*2 24 GB
GeForce GTX 780 (Kepler) 3.0 GB 325.15 Ubuntu 12.04 3.5.0 Intel Core i7-2600 8 GB
AMD
Radeon HD 7850 (Pitcairn) 1.8 GB 13.1 CentOS 6.4 2.6.32 Intel Xeon E5430*2 8 GB
FirePro W9000 (Tahiti) 6.0 GB 12.104.2 CentOS 6.4 2.6.32 Intel Xeon E5430*2 8 GB

Algorithm 4 End-of-Kernel Attack on AMD GPUs

Input: own← the size of memory occupied by attacker
1: context← createGPUContext()
2: time← kernelDummy()
3: while time < threshold do // no victim exists
4: sleep()
5: time← kernelDummy()
6: end while
7: while time ≥ threshold do // victim works
8: local priv ← kernelReadLocalPrivMem()
9: memoryCopyDeviceToHost(local priv)

10: alloc← allocateMemory(total − own)
11: memoryCopyDeviceToHost(alloc)
12: sleep()
13: time← kernelReadData()
14: end while

E. Attacks on AMD GPU

1) Differences and Increased Vulnerability: The attacks

on AMD GPUs slightly differ from the attacks on NVIDIA

GPUs due to dynamic memory management of AMD GPUs

and OpenCL1. Unlike NVIDIA GPUs, AMD GPUs and

OpenCL provide no APIs to check available memory size as

they dynamically manage the global memory. When a new

GPU program requests large memory blocks exceeding the

available global memory size, while an old GPU program

occupying a portion of global memory is inactive, AMD

GPUs automatically move the old GPU program’s data back

to CPU memory to fulfill the new program’s requirements.

NVIDIA GPUs do not provide this functionality, although

they support OpenCL.

However, we detect that the AMD GPU driver does not
nullify GPU memory for the new program. An attacker can

read the global memory of a victim program when he or

she requests memory before the victim program deletes and

deallocates its GPU memory.

Instead of checking the available GPU memory sizes, we

use the changes in kernel execution timing for determining

whether a victim program uses GPUs. GPU kernels of

different programs share a GPU in a time-sharing fashion,

so that the execution time of a GPU kernel varies according

to other kernels using the GPU.

1http://devgurus.amd.com/message/1296453

2) Attack Procedure: Algorithm 4 shows the EoK attack

on AMD GPUs. We execute a dummy kernel and measure

its execution time to know whether a victim program uses

the GPU. If a victim program exists, the execution time of

the dummy kernel certainly increases because current GPUs

cannot concurrently execute different GPU programs [18].

When an attacker detects a victim, the attacker executes

kernels for reading the local and private memories. Fur-

thermore, the attacker can also acquire the entire global

memory because of the dynamic memory management of

AMD GPUs. Consequently, the EoC attack is unnecessary

when attacking AMD GPUs.

F. Test Platforms

We test five different platforms to check the coverage of

the proposed attacks (Table I). The test platforms include

NVIDIA GeForce 210, NVIDIA Tesla C2050, NVIDIA

GeForce GTX 780, AMD Radeon HD 7850, and AMD

FirePro W9000 GPUs on Linux operating systems with

various driver versions. We verify that our attacks succeed

in the test platforms without errors.

G. Attacks on “Real” Programs

So far, we explain our attacks to disclose GPU memory

used by an experimental GPU program we made that only

handles meaningless data. To show that our attacks are not

only highly applicable, but also crucial threats to both GPUs

and their users, we have to attack a real program that (1) uses

GPU APIs, (2) deals with sensitive data, and (3) is popular.

Recent web browsers, such as Chromium and Firefox, fulfill

all the requirements: (1) they use graphics APIs for efficient

webpage rendering, (2) they handle a user’s private data

such as browsing history, and (3) they are extremely popular.

Therefore, we choose them as our attack targets and discuss

the results in the next section.

V. INFERRING WEB BROWSING HISTORY FROM GPUS

In this section, we explain our attacks on web browsers

to infer web browsing history of a victim user using data

extracted from GPUs by leveraging the attacks explained in

Section IV. Recent web browsers, such as Chromium and

Firefox, support GPU-accelerated webpage rendering so we

expect that rendered webpage textures may remain in GPU
memory. Our inference attacks match the GPU memory



dump with either known webpage dumps or known webpage

snapshots to infer which webpages a victim user has visited.

We identify that webpage textures remain not in the

local and private memories, but in the global memory. The

content of the local and private memories does not change

according to which webpages a victim has visited, but

changes according to which web browsers a victim uses.

Hence, we focus on attacking the global memory to infer

web browsing history.

A. Web Browsers and Configurations

We use the Chromium web browser version 30 and

Firefox web browser version 25 in this case study. For

the Chromium web browser, we enable the “GPU com-

positing of all page” option to use GPU-accelerated

webpage composition. For the Firefox web browser,

we enable the layers.offmainthreadcomposition.enabled and

layers.acceleration.force-enabled options, and disable the

layers.use-deprecated-textures option. We execute the web

browsers on three Linux systems with NVIDIA GeForce

210, NVIDA GeForce GTX 780, and AMD FirePro W9000

GPUs (Table I). The Linux systems with the NVIDIA GPUs

use Xfce 4.8, and another Linux system with the AMD GPU

uses Gnome 2.28.2.

B. GPU Memory Dump and Texture Rearrangement

When we examine a GPU memory dump of

google.com extracted from the Chromium web browser

with an NVIDIA GeForce GTX 780 GPU obtained by

performing the EoC attack, we find a number of 32-bit

values that seem to represent colors, such as 0x00ffffff,

0x00404040, 0x00e85947, and 0x00da3d29. Starting

from the most significant bit, we treat each two bytes as

blank, red, green, and blue color values, respectively. We

construct Figure 1b by judging each value with the rule

while ignoring black (zeros).

As Figure 1 shows, GPUs store textures on GPU memory

in a rearranged form so that we need solutions to recognize

them. However, recovering the original textures from the

rearranged textures is difficult because (1) GPU vendors

document nothing about the hardware-level texture man-

agement, (2) GPUs have virtualized and paged memory,

and (3) GPU memory dumps also contain other non-color

data. Therefore, instead of trying to recover the original

textures, we strive to design methods for inferring the visited

webpages from the rearranged textures.

C. Overview of Attack Scenarios

We consider three attack scenarios to know how attackers

can infer browsing history of victims by leveraging GPUs in

various situations. First, we assume an attacker who prepares

GPU memory dumps of known webpages extracted from the

same GPU a victim uses and tries to compare them with a

GPU memory dump of an unknown webpage. We confirm

that this attack can correctly infer up to 95.4% of randomly

selected 100 front pages of Alexa Top 1000 websites.

Second, we assume an attacker who prepares image
snapshots of known webpages and tries to compare them

with a GPU memory dump of an unknown webpage. Unlike

the first attack, this attack does not require that the attacker

and victims use the same GPU. This attack correctly infers

∼50% of the randomly selected 100 front pages.

Third, we assume an attacker trying to attack a victim

who simultaneously opens multiple webpages using either

multiple tabs or windows. We observe that the attacker can

accurately infer the webpages of the front tab or the lastly

rendered window.

D. Attack using Known GPU Memory Dump

In this attack, an attacker prepares GPU memory dumps

of famous webpages to compare them with a new GPU

memory dump of a victim web browser. We choose front

pages of Alexa Top 1000 websites as our dataset. We visit

each of them using the Chromium and Firefox web browsers

with NVIDIA and AMD GPUs, respectively, and close the

browsers 60 second later while recording GPU memory

dumps using the EoC attack. We repeat these procedures

10 times to average out the results.

We use three matching methods for comparing GPU

memory dumps: pixel sequence matching, RGB histogram

matching, and a combination of them.

1) Pixel Sequence Matching: The pixel sequence match-

ing compares non-black and non-white contiguous pixel

sequence sets extracted from two GPU memory dumps using

Jaccard Index (JI). We ignore (1) black pixels because we

cannot distinguish them with zero in memory and (2) white

pixels because most webpages have a large number of white

pixels.

For example, if a GPU memory dump contains the fol-

lowing pixels

c1, c2, cb, c3, cb, c4, cw, cw, c5, c6, cb,

where each ci is a tuple of red, blue, and green color values

(0–255), cb is black (0,0,0), and cw is white (255,255,255),

the pixel sequence set is

P = {(c1, c2), (c3), (c4), (c5, c6)}.
Moreover, the JI of the following two pixel sequence sets

P1 = {(c1, c2), (c3), (c4), (c5, c6)},
P2 = {(c1, c2, c3), (c4), (c5, c6)},

are

|P1 ∩ P2|
|P1 ∪ P2| =

|(c4), (c5, c6)|
|(c1, c2), (c3), (c4), (c5, c6), (c1, c2, c3)| =

2

5
.

Figure 7 shows boxplots of pixel sequence similarity

of the same and different webpages with NVIDIA and
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(a) Chromium with GTX 780.
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(b) Firefox with GTX 780.
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(c) Chromium with W9000.
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(d) Firefox with W9000.

Figure 7. Pixel sequence similarity between webpage dumps extracted
from NVIDIA and AMD GPUs.

AMD GPUs. We observe that the pixel sequence similar-

ity between the same webpage is fairly higher than that

of different webpages in all cases. The median similarity

between the same webpage is 0.865 whereas that of the

different webpage is 0.014 in the Chromium browser with

the NVIDIA GPU, those of the Firefox browser with the

NVIDIA GPU are 0.478 and 0.029, those of the Chromium

browser with the AMD GPU are 0.671 and 0.007, and

those of the Firefox browser with the AMD GPU are 0.888

and 0.060. When computing the cross similarity between

different webpages, we use the centroid pixel sequence set
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Figure 8. The amount of GPU memory the Chromium web browser utilizes
for rendering four different Google webpages with an NVIDIA GTX 780
GPU.

of each webpage, whose average similarity between pixel

sequence sets of the same webpage is the largest.

We further inspect (1) the same webpages having low

pixel sequence similarity and (2) different webpages having

high pixel sequence similarity. First, most of the same

webpages with the low similarity are dynamic webpages

showing different images at each visit, such as apple.com
and tumblr.com. If attackers prepare a number of GPU

memory dumps corresponding to the dynamic contents, they

may overcome this limitation.

Second, most of the different webpages with high similar-

ity are either similar or the same webpages having different

domain names, such as (google.com, google.co.uk)

and (facebook.com, fbcdn.net). We are certain that

distinguishing them is less meaningful because attackers

can infer a victim’s preferences using one of the similar

webpages. Furthermore, we can distinguish them if we

monitor changes in GPU memory utilization by the browsers

as Memento [26] does. Figure 8 shows that the Chromium

web browser has different GPU memory usage patterns

when rendering four different Google webpages. Such a

monitoring, however, only works with NVIDIA GPUs be-

cause AMD GPUs provide no APIs to check the available

global memory size.

The limitation of the pixel sequence matching is that pixel

sequences heavily depend on which GPU and web browser

a victim uses (Figure 9). For this reason, attackers should

prepare the web browser and the GPU that are equivalent to

those of a victim to perform this attack.

2) RGB Histogram Matching: The RGB histogram

matching compares non-black and non-white RGB his-

tograms derived from two GPU memory dumps using Eu-
clidean distance. An RGB histogram is a tuple of 256 values

for red, blue, and green channels as follow:

H = (r0, r1, . . . , r255, g0, g1, . . . , g255, b0, b1, . . . , b255).



Browser Generation Vendor
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

P
ix

el
se

qu
en

ce
si

m
ila

rit
y

Figure 9. Pixel sequence similarity between the same webpage dumps
extracted from different browsers (on an NVIDIA GeForce GTX 780),
different generation of GPUs (NVIDIA GeForce 210 vs. GTX 780 with
Chromium), and different vendors (NVIDIA GTX 780 vs. AMD W9000)
with Chromium.

For example, a pixel (128,64,32) contributes one to the 128-

th, the 320-th, and the 544-th values of a tuple, respectively.

We check dissimilarity of RGB histogram tuples by divid-

ing them with the sum of all 768 values (normalization)

and computing Euclidean distance, while using a random

projection method for dimensionality reduction [29].

Figure 10 shows boxplots of RGB histogram distance of

the same and different webpages with NVIDIA and AMD

GPUs. We identify that histogram distance between the same

webpage is shorter than that of the different webpages in

all cases. The median distance between the same webpage

is 0.004 whereas that of the different webpage is 0.210 in

the Chromium browser with the NVIDIA GPU, those of the

Firefox browser with the NVIDIA GPU are 0.011 and 0.093,

those of the Chromium browser with the AMD GPU are

0.003 and 0.196, and those of the Firefox browser with the

AMD GPU are 0.004 and 0.150. Again, dynamic webpages

and similar or the same webpages with different domain

names dominate errors, like the pixel sequence matching.

Since the RGB histogram has weaker correlation with

GPUs than the pixel sequences has, preparing the same GPU

that a victim uses is optional for performing this attack.

Figure 11 shows that the RGB histogram distance between

the same webpage dumps extracted from different GPUs

is shorter than those of the different webpages when we

use the same web browser. In contrast, dumps came from

the different browsers quite differ, so that attackers should

prepare different dump sets for different browsers.

3) Inference Accuracy and Combined Matching: We

evaluate the inference accuracy of the proposed matching

methods. We randomly choose 100 front pages from the

Alexa Top 1000 websites and visit them while recording

GPU memory dumps. We then compare each of the new

dumps with the known dumps to infer the corresponding

webpages. When we detect a known dump having either

the largest similarity or shortest distance with a new dump

(a nearest neighbor), we treat both correspond to the same

webpage. In addition, if the proposed matching methods

decide the same or similar webpages having different do-

main names are the same, we treat the methods are correct
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(a) Chromium with GTX 780.
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(b) Firefox with GTX 780.
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(c) Chromium with W9000.
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(d) Firefox with W9000.

Figure 10. RGB histogram distance between webpage dumps extracted
from NVIDIA and AMD GPUs.

because visiting whether google.com or google.fr in-

curs negligible difference in inferring a victim’s preferences.

We perform this procedure 10 times and finally compute

their average.

Figure 12 shows the evaluated inference accuracy of the

proposed methods. On average, the pixel sequence matching

can infer 69.4% of the randomly selected 100 webpages and

the RGB histogram matching can infer 60.9% of them. We

identify that the Chromium web browser with the NVIDIA

GPU and the Firefox web browser with the AMD GPU are

more vulnerable.

Lastly, we simultaneously apply the pixel sequence match-
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(a) Same webpage.

Browser Generation Vendor
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
is

to
gr

am
di

st
an

ce

(b) Different webpage.

Figure 11. RGB histogram distance between dumps extracted from
different browsers (on an NVIDIA GeForce GTX 780), different generation
GPUs (NVIDIA GeForce 210 vs. GTX 780 with Chromium), and different
vendors (NVIDIA GTX 780 vs. AMD W9000) with Chromium.

ing and the RGB histogram matching when comparing

dumps to further increase the inference accuracy. The pro-

cedure is as follows. First, we use the pixel sequence

matching for detecting the top-k known dumps similar to

a new dump (k-nearest neighbors). Next, we use the RGB

histogram matching for selecting one of the top-k known

dumps having the smallest distance with a new dump. We

treat the selected known dump as the corresponding webpage

of the new dump. As shown in Figure 12, the combined

matching achieves the highest accuracy: it correctly infers

84.6% of the randomly selected 100 webpages on average.

Particularly, victims who use the Chromium web browser

with the NVIDIA GPU are in danger because the combined

matching attack can infer the webpages they have visited

within 95.4% accuracy.

4) Efficiency: We lastly check the efficiency of our

matching methods. For the measurements, we use the test

platform that has Intel Core i7-2600 CPU and 8 GB of main

memory. On average, it takes ∼0.451 s and ∼0.002 s to

perform the pixel sequence matching and the RGB histogram

matching between two GPU memory dumps, respectively.

The average execution time of the combined matching is

the sum of the two average values. Since we can conduct

each comparison between two GPU memory dumps in

parallel, we can further accelerate the performance of the

matching methods using data parallel systems (e.g., multi-

core processors or GPUs’ computing APIs). We omit details

of such accelerations in this work, because reducing attack

costs is not our primary goal.
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Figure 12. Portion of correctly inferred webpages according to GPUs,
browsers, and matching methods.

E. Attack using Webpage Snapshot

The attack using known GPU memory dumps demand

attackers to prepare a number of GPU memory dumps to

perform the attack. Although the RGB history matching does

not need the same GPU a victim uses, still, preparing dumps

is significant overhead.

We introduce another method for further reducing attack

overhead: using known webpage snapshots instead of known

GPU memory dumps. First, we use PhantomJS [30] for load-

ing the front pages of Alexa Top 1000 websites while taking

their image snapshots. Next, we compare the snapshots with

GPU memory dumps using the RGB histogram matching.

Note that we cannot perform the pixel sequence matching

using snapshots because of texture rearrangement.

When taking webpage image snapshots, we set

page.clipRect of PhantomJS to fit to our screen

size to create screen-size snapshots. This is because

GPU memory dumps only contain a portion of webpages

displayed on a screen, whereas webpage screenshots

of PhantomJS by default also contain a portion of the

webpages not displayed on the screen (full webpage

screenshots).

Figure 13 shows boxplots of RGB histogram distance

between webpage image snapshots and dumps. We identify

that the RGB histogram matching between the webpage

snapshots and the dumps extracted from the Chromium

browsers with both GPUs work well: the median distance

between the same webpage is 0.064 whereas that of the

different webpage is 0.214 in the NVIDIA GPU, and the me-

dian distance between the same webpage is 0.009 whereas

that of the different webpage is 0.225 in the AMD GPU. In

contrast, the RGB histogram matching does not work well

when we test the Firefox browsers with GPUs: their distance

is long even when we compare the same webpages. This is

because the dumps extracted from the Firefox web browsers

also contain non-texture data, resulting in low inference

accuracy.

We further check inference accuracy as explained in

Section V-D. We correctly infer ∼50% and ∼22% of the
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(a) Chromium with GTX 780.
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(b) Chromium with W9000.
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(c) Firefox with GTX 780.
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(d) Firefox with W9000.

Figure 13. RGB histogram distance between webpage image snapshots
and dumps.

randomly selected 100 front pages using the Chromium web

browser with NVIDIA and AMD GPUs, respectively, which

is worse than that of the attack using known GPU memory

dumps, but the results of NVIDIA GPUs are still meaningful.

F. Attack on Victims Browsing Multiple Webpages

Lastly, we identify whether we can attack a victim who si-

multaneously visits multiple webpages using tabs or separate

windows. Using multiple tabs or windows of web browsers

is common in a desktop environment so that considering

such scenarios is meaningful.

First, we visit each front page of Alexa Top 100 websites

Foreground Background
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

P
ix

el
se

qu
en

ce
si

m
ili

ar
ity

(a) Pixel sequence.
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(b) RGB histogram.

Figure 14. Comparisons between combined dumps and dumps of fore-
ground and background webpages in two tabs (Chromium and GTX 780).

along with a randomly selected front page among them

using two tabs while recording GPU memory dumps (10

times). Next, we check the pixel sequence similarity and the

RGB histogram distance between the recorded dumps and

known dumps of the foreground and background webpages,

respectively. For simplicity, we only use the Chromium web

browser and an NVIDIA GTX 780 GPU when performing

this attack.

We observe that the recorded memory dumps with two

tabs mostly contain the pixel sequences and the RGB

histograms of the foreground webpages (Figure 14). We

conclude that the Chromium web browser does not use

GPUs for rendering background webpages as foreground

webpages cloak them.

Second, we visit each front page of Alexa Top 100

websites right after visiting a randomly selected front page

among them using two separate windows while recording

GPU memory dumps (10 times). We adjust the size and

position of two windows to avoid overlap between them.

We then check the pixel sequence similarity and the RGB

histogram distance between the recorded dumps and known

dumps of the firstly and secondly rendered webpages, re-

spectively.

We detect that the recorded memory dumps mostly con-

tain the pixel sequences and RGB histograms of the secondly

rendered webpages (Figure 15). We presume that GPUs

write the textures of the secondly rendered webpages to the

same buffer of the firstly rendered webpages so that the

earlier textures are overwritten.

We lastly check inference accuracy: the combined match-

ing correctly infers 98.6% of webpages loaded in the fore-
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(a) Pixel sequence.
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(b) RGB histogram.

Figure 15. Comparisons between combined dumps and dumps of firstly
and secondly rendered webpages in two windows (Chromium and GTX
780).

ground tabs and 90.8% of webpages loaded in the secondly

rendered windows. We presume that the relatively low

accuracy of the inference on the secondly rendered windows

is due to the unoverwritten textures of the firstly rendered

windows. Consequently, when a victim visits a number of

webpages using a GPU-accelerated web browser, attackers

can accurately infer some of the webpages either loaded in

the foreground tab or rendered in the lastly opened window.

VI. DISCUSSION

A simple solution for preventing the proposed attack

is clearing newly allocated global memory pages as We-

bGL [20] does. Moreover, GPUs need to delete the per-CU

local memory and per-PE private memory at GPU context

switches.

Unfortunately, we expect that GPU vendors are unwilling

to embrace such methods because they bring performance

degradation. For example, NVIDIA targets to reduce the cost

of the GPU context switch below 25 μs [31]. However, it

takes 79 μs to delete the entire local and private memories

when we execute our optimized GPU memory deletion

program in an NVIDIA GeForce GTX 780 GPU, which is

approximately three times longer than the context switching

time. The GPU vendors may not accept such huge overhead

because their main concerns are performance and power

efficiency. Consequently, we demand new hardware- and

software-level solutions for efficiently clearing GPU mem-

ory, which cannot be accomplished without GPU vendors’

efforts.

While neither GPU vendors nor researchers provide such

solutions, GPU programs dealing with sensitive data should

delete global memory pages before deallocating them, and

clear the local and private memories before context switches.

The graphics APIs, however, provide no functions to clear

memory contents. Therefore, graphics programs have to use

the computing APIs for manually clearing allocated GPU

memory, though it results in performance degradation and

high programming complexity.

VII. RELATED WORK

In this section, we introduce some related studies of this

work.

A. Remote Pixel Stealing in HTML5

Numerous researchers [32]–[34] consider security attacks

exploiting HTML5 CSS filters that allow web developers

to apply various graphics effects on webpages using host

GPUs. By applying CSS filters to a target webpage loaded

in an iframe while measuring the completion time, the CSS

filter-based attacks can recognize a user’s login status and

steal pixels of the target webpage. However, the attacks have

restricted coverage because (1) they should deceive victims

to visit their malicious webpage and (2) many webpages

disallow web browsers to load them in an iframe to avoid

security attacks.

B. Security Attacks using GPUs

GPU-based cracking against passwords or hash values are

well-known security attacks [35]. Some academic studies

also utilize GPUs for conducting general security attacks.

Vasiliadis et al. [36] shows the possibility of malware

obfuscation using GPUs. First, they load an encrypted

malware on a host’s main memory and map its memory

address to GPU memory to enable direct access on the

memory from GPUs, also known as zero-copy memory [2].

Next, their code decrypts the malware, and the host finally

executes it. Ladakis et al. [37]’s GPU-based keylogger also

relies on memory-mapped IOs. The keylogger first uses

a rootkit for mapping the keybuffer in kernel memory to

GPU memory. The GPU part of the keylogger then records

keystrokes through the mapped keybuffer, and lastly returns

the recorded keystrokes to the host.

C. General Applications of GPUs

Several researchers conduct various studies to utilize

GPUs for solving general and computation-intensive prob-

lems. For example, researchers try to use GPUs for in-

creasing the performance of AES [13]–[15] and RSA [16],

[17] algorithms. Some researchers also implement high-

speed intrusion detection systems (IDSs) [10], [11] and

an SSL accelerator [12]. Other researchers also introduce

GPU-accelerated routers for IP network [9] and database

accelerators [7], [8].

The preceding applications, however, may suffer from

serious threats because of the security problems discussed in



this work. For example, attackers can extract secret keys and

plaintext from GPU-based cryptographic engines without a

root privilege. Furthermore, they can capture packets from

GPU-based IDSs, SSL accelerators, and routers. Conse-

quently, both GPU programmers and researchers need to

be aware of the security problems of GPUs that this work

considers.

VIII. CONCLUSION

GPUs become more powerful and general, and many ap-

plications increase their performance using them. However,

no in-depth study has considered their security problems.

In this paper, we investigated the security vulnerabilities of

GPUs, and described attacks that reveal a victim’s sensi-

tive data kept in GPUs. We further applied the proposed

attacks on popular programs using GPUs: the Chromium

and Firefox web browsers utilizing GPUs for faster webpage

rendering. We were able to successfully obtain rendered

webpage textures remaining in GPU memory and accurately

infer their original webpages. Therefore, both GPU vendors

and programmers need to know that GPU programs can be

in danger, and prepare countermeasures to cope with such

threats.
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