
STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Spineless Tagless G-machine

Hannes Mehnert
mehnert@cs.tu-berlin.de

TU Berlin

21.01.2005

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Terms

Spineless: ’does not need to build the spine of the expression
being reduced’

Tagless: no tag bits (used to distinguish between different
types)

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

History

G-machine: 1987 (Augustsson, Johnsson)

Spineless G-machine: 1988 (Burn, Peyton Jones and Robson)

Spineless tagless G-machine:1992 (Peyton Jones)

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Closures
Lambda lifting
Arithmetic and unboxed values

Overview of the STG language

Purely-functional language

All arguments are simple variables or constants

All constructors and built-in operations are saturated

Pattern matching is performed only by case expressions

Bindings contain free variables, update flag and lamda-form,
no lambda lifting needed

Supports unboxed values

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Closures
Lambda lifting
Arithmetic and unboxed values

Closures and updates

It is safe to set the update flag to u of every lambda-form

Updates are never required for functions, partial applications
and constructors

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Closures
Lambda lifting
Arithmetic and unboxed values

Lambda lifting

All function definitions are lifted to the top level

Their free variables become extra arguments

Each lambda-form has no free variables or no arguments

Local environment of the STG machine consists of two parts

Values in the closure just entered (its free variables)
Values on the stack (its arguments)

Reduces the movement of values from the heap to the stack

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Closures
Lambda lifting
Arithmetic and unboxed values

Arithmetic and unboxed values

Variables are bound to unevaluated heap-allocated closure

Unboxed value is the actual value (result of the evaluated
closure)

Boxed representation makes arithmetic expensive

In the STG language, functions may take unboxed values as
arguments and return them as results

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Components of the state

Code, which is one of the following:

Eval e p
Enter a
ReturnCon c ws
ReturnInt k

Argument stack, which contains values

Return stack, which contains continuations

Update stack, which contains update frames

Heap, which contains closures

Global environment, which gives the addresses of all closures
defined at top level

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Initial state

Code: Eval(main {}) {}

Argument stack: empty

Return stack: empty

Update stack: empty

Heap: contains a closure for each global

Global environment: binds each global to its closure

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Let(rec) expressions

A let and letrec expression constructs one or more closures in
the heap

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Case expressions

“case e of alts”

Push a continuation onto return stack and evaluate e

Continuation is a pair(alts, p)

Alternative alts is the code which is evaluated when e finished

Environment p is the context in which to evaluate the
alternative

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Updating

An update frame is pushed onto the update stack when an
updatable closure is entered

Previous argument stack
Previous return stack
Pointer to the closure being entered

After evaluation of a closure is complete, an update is
triggered

Value is a data constructor or literal, pop return stack fail
Value is a function, bind argument(s) fail

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

Heap

The heap is a collection of closures

Each closure is variable size and identified by a unique address

A pointer is the address of a closure

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

Layout of a closure

Non−pointer words

Scavange code

Evacuation code

Standard entry code

Info table

Other info

Info pointer Pointer words

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

Two-space stop-and-copy garbage collection

Memory is divided into two spaces

Each live closure must be evacuated from from-space to
to-space

To-space is scanned linearly, each closure must be scavenged

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

Two-space stop-and-copy garbage collection

Memory is divided into two spaces

Each live closure must be evacuated from from-space to
to-space

To-space is scanned linearly, each closure must be scavenged

Evacuation:

Copy closure into to-space
Overwrite closure in from-space with a pointer pointing to
to-space
Return to-space address

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

Two-space stop-and-copy garbage collection

Memory is divided into two spaces

Each live closure must be evacuated from from-space to
to-space

To-space is scanned linearly, each closure must be scavenged

Evacuation:

Copy closure into to-space
Overwrite closure in from-space with a pointer pointing to
to-space
Return to-space address

Scavenging:

Call evacuation code
Replace pointer with returned to-space pointer

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

Abstract machine contains three stacks

Argument stack (closure addresses and primitive values)

Return stack (continuations for case expressions)

Update stack (update frames)

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

One stack

Would be possible

Garbage collector must use all pointers in the stack as roots

Garbage collector would need to know whether each frame is

Closure address
Code address
Primitive value

Could be solved by a tag-bit, but arithmetic would be much
slower

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Heap
Garbage collection
Stacks

Two stacks

A-stack for pointers

B-stack for non-pointers

Nomenclature from ABC machine

A = argument
B = basic value

Stack pointers are in special registers SpA and SpB

Grow towards each other

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Target language

C is used as high-level assembler to gain portability

Argument stacks and control stack are mapped onto C arrays,
bypassing usual C parameter-passing

All “registers” are global variables

Compiling jumps
Giant switch

Adds a layer of indirection
Entire program has to be gathered in a single giant C
procedure and then be compiled

Tiny interpreter

Each labelled block of code is compiled to a parameter-less C
function whose name is the required label
while (TRUE) { cont = (*cont)(); }

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Initial state

Evaluates main

Heap contains a closure for each global variable

Each of these closures can be referred directly by its C label

Linker implements the global environment

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Let(rec) expressions

Always compile to code which allocates a closure in the heap
for each definition

Followed by code to evaluate the body

Standard-entry code for a closure:

Argument satisfaction check
Stack overflow check
Heap overflow check
Info pointer update
Update frame construction

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Case expressions

Save local environment (all live variables)

Already in stack, nothing to be done
Register or offset of heap pointer, saved to the appropriate
stack
Closure pointed to by Node, save variable or Node

Select alternative

Push pointer to return vector on stack B
C switch on register RTag

Return constructor arguments

Node register point to closure with values
Return arguments in registers

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language
Operational semantics

Heap, garbage collection, stacks
Compiling to C

Initial state
Let(rec) expressions
Case expressions
Updating

Updating

Push update frame on B stack

Stack base registers point to top of stacks

Partial application

Constructors

Vectored returns

Return values in registers

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



References

Used by the Glasgow Haskell Compiler
http://www.haskell.org/ghc/

Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine
http://uebb.cs.tu-berlin.de/lehre/2004WScompilerbau/papers/peytonjones92implementing.ps.gz

The Spineless G-Machine
http://portal.acm.org/citation.cfm?id=62717

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine

http://www.haskell.org/ghc/
http://uebb.cs.tu-berlin.de/lehre/2004WScompilerbau/papers/peytonjones92implementing.ps.gz
http://portal.acm.org/citation.cfm?id=62717

	STG language
	Closures
	Lambda lifting
	Arithmetic and unboxed values

	Operational semantics
	Initial state
	Let(rec) expressions
	Case expressions
	Updating

	Heap, garbage collection, stacks
	Heap
	Garbage collection
	Stacks

	Compiling to C
	Initial state
	Let(rec) expressions
	Case expressions
	Updating


