Spineless Tagless G-machine

Hannes Mehnert
mehnert@cs.tu-berlin.de

TU Berlin

21.01.2005

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



@ Spineless: 'does not need to build the spine of the expression
being reduced’

@ Tagless: no tag bits (used to distinguish between different
types)

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



History

@ G-machine: 1987 (Augustsson, Johnsson)
@ Spineless G-machine: 1988 (Burn, Peyton Jones and Robson)
@ Spineless tagless G-machine:1992 (Peyton Jones)

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language Closures

Lambda lifting
Arithmetic and unboxed values

Overview of the STG language

*]
*]
]
]
]

Purely-functional language

All arguments are simple variables or constants

All constructors and built-in operations are saturated
Pattern matching is performed only by case expressions

Bindings contain free variables, update flag and lamda-form,
no lambda lifting needed

Supports unboxed values

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language Closures

Lambda lifting
Arithmetic and unboxed values

Closures and updates

@ [t is safe to set the update flag to u of every lambda-form

@ Updates are never required for functions, partial applications
and constructors

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language Closures

Lambda lifting
Arithmetic and unboxed values

Lambda lifting

*]
]
*]
]

All function definitions are lifted to the top level
Their free variables become extra arguments
Each lambda-form has no free variables or no arguments

Local environment of the STG machine consists of two parts

s Values in the closure just entered (its free variables)
o Values on the stack (its arguments)

(]

Reduces the movement of values from the heap to the stack

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



STG language Closures

Lambda lifting
Arithmetic and unboxed values

Arithmetic and unboxed values

@ Variables are bound to unevaluated heap-allocated closure

@ Unboxed value is the actual value (result of the evaluated
closure)

@ Boxed representation makes arithmetic expensive

@ In the STG language, functions may take unboxed values as
arguments and return them as results

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Operational semantics Let(rec) expressions
Case expressions
Updating

Components of the state

Code, which is one of the following:

e Evalep

o Enter a

o ReturnCon c ws
o Returnint k

Argument stack, which contains values
Return stack, which contains continuations
Update stack, which contains update frames

Heap, which contains closures

e © ¢ ¢ ¢

Global environment, which gives the addresses of all closures
defined at top level

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Operational semantics Let(rec) expressions
Case expressions
Updating

Initial state

Code: Eval(main {}) {}

Argument stack: empty

Return stack: empty

Update stack: empty

Heap: contains a closure for each global

e ¢ ¢ ¢ ¢ ¢

Global environment: binds each global to its closure

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Operational semantics Let(rec) expressions
Case expressions
Updating

Let(rec) expressions

@ A let and letrec expression constructs one or more closures in
the heap

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Operational semantics Let(rec) expressions
Case expressions
Updating

Case expressions

*]
*]
*]
]
]

“case e of alts”

Push a continuation onto return stack and evaluate e
Continuation is a pair(alts, p)

Alternative alts is the code which is evaluated when e finished

Environment p is the context in which to evaluate the
alternative

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Operational semantics Let(rec) expressions
Case expressions
Updating

Updating

@ An update frame is pushed onto the update stack when an
updatable closure is entered
o Previous argument stack
o Previous return stack
¢ Pointer to the closure being entered
@ After evaluation of a closure is complete, an update is
triggered
o Value is a data constructor or literal, pop return stack fail
@ Value is a function, bind argument(s) fail

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection
Stacks

Heap, garbage collection, stacks

@ The heap is a collection of closures
@ Each closure is variable size and identified by a unique address

@ A pointer is the address of a closure

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection

Heap, garbage collection, stacks Stacks

Layout of a closure

Info pointer Pointer words Non—pointer words

Info table

Standard entry code

Evacuation code

Scavange code

Other info

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection

Heap, garbage collection, stacks Stacks

Two-space stop-and-copy garbage collection

@ Memory is divided into two spaces

@ Each live closure must be evacuated from from-space to
to-space

@ To-space is scanned linearly, each closure must be scavenged

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection

Heap, garbage collection, stacks Stacks

Two-space stop-and-copy garbage collection

@ Memory is divided into two spaces

@ Each live closure must be evacuated from from-space to
to-space

@ To-space is scanned linearly, each closure must be scavenged

@ Evacuation:

o Copy closure into to-space

@ Overwrite closure in from-space with a pointer pointing to
to-space

@ Return to-space address

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection

Heap, garbage collection, stacks Stacks

Two-space stop-and-copy garbage collection

Memory is divided into two spaces

Each live closure must be evacuated from from-space to
to-space

To-space is scanned linearly, each closure must be scavenged
Evacuation:

(]

o Copy closure into to-space
@ Overwrite closure in from-space with a pointer pointing to
to-space
@ Return to-space address
Scavenging:
e Call evacuation code
@ Replace pointer with returned to-space pointer

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection

Heap, garbage collection, stacks Stacks

Abstract machine contains three stacks

@ Argument stack (closure addresses and primitive values)
@ Return stack (continuations for case expressions)

@ Update stack (update frames)

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection

Heap, garbage collection, stacks Stacks

One stack

@ Would be possible
@ Garbage collector must use all pointers in the stack as roots

@ Garbage collector would need to know whether each frame is

o Closure address
@ Code address
@ Primitive value

@ Could be solved by a tag-bit, but arithmetic would be much
slower

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Heap
Garbage collection

Heap, garbage collection, stacks Stacks

Two stacks

A-stack for pointers

B-stack for non-pointers
Nomenclature from ABC machine

o A = argument
@ B = basic value

Stack pointers are in special registers SpA and SpB
Grow towards each other

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Let(rec) expressions

Case expressions
Compiling to C Updating

Target language

@ C is used as high-level assembler to gain portability

@ Argument stacks and control stack are mapped onto C arrays,
bypassing usual C parameter-passing

@ All "registers” are global variables
@ Compiling jumps
o Giant switch
@ Adds a layer of indirection
@ Entire program has to be gathered in a single giant C
procedure and then be compiled
@ Tiny interpreter
@ Each labelled block of code is compiled to a parameter-less C

function whose name is the required label
@ while (TRUE) { cont = (*cont)(); }

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Let(rec) expressions

Case expressions
Compiling to C Updating

Initial state

]
]
]
]

Evaluates main
Heap contains a closure for each global variable
Each of these closures can be referred directly by its C label

Linker implements the global environment

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Let(rec) expressions

Case expressions
Compiling to C Updating

Let(rec) expressions

@ Always compile to code which allocates a closure in the heap
for each definition

@ Followed by code to evaluate the body
@ Standard-entry code for a closure:

o Argument satisfaction check
Stack overflow check

Heap overflow check

Info pointer update

Update frame construction

¢ ¢ ¢ ¢

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Let(rec) expressions

Case expressions
Compiling to C Updating

Case expressions

@ Save local environment (all live variables)

& Already in stack, nothing to be done

o Register or offset of heap pointer, saved to the appropriate
stack

@ Closure pointed to by Node, save variable or Node

@ Select alternative

@ Push pointer to return vector on stack B
@ C switch on register RTag

@ Return constructor arguments

o Node register point to closure with values
o Return arguments in registers

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



Initial state

Let(rec) expressions

Case expressions
Compiling to C Updating

Updating

Push update frame on B stack

Stack base registers point to top of stacks
Partial application

Constructors

Vectored returns

e ¢ ¢ ¢ ¢ ¢

Return values in registers

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine



References

@ Used by the Glasgow Haskell Compiler
http://www.haskell.org/ghc/

@ Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine
http://uebb.cs.tu-berlin.de/lehre/2004WScompilerbau/paj

@ The Spineless G-Machine
http://portal.acm.org/citation.cfm?id=62717

Hannes Mehnert mehnert@cs.tu-berlin.de Spineless Tagless G-machine


http://www.haskell.org/ghc/
http://uebb.cs.tu-berlin.de/lehre/2004WScompilerbau/papers/peytonjones92implementing.ps.gz
http://portal.acm.org/citation.cfm?id=62717

	STG language
	Closures
	Lambda lifting
	Arithmetic and unboxed values

	Operational semantics
	Initial state
	Let(rec) expressions
	Case expressions
	Updating

	Heap, garbage collection, stacks
	Heap
	Garbage collection
	Stacks

	Compiling to C
	Initial state
	Let(rec) expressions
	Case expressions
	Updating


