
CHAPTER 12

Transformations in 3D

There are no built­in routines for 3D drawing in PostScript. For this purpose we shall have to use a library of
PostScript procedures designed especially for the task, as an extension to basic PostScript. In this chapter we

shall look at some of the mathematics behind such a library, which is much more complicated than that required
in 2D.

We shall examine principally rigid transformations , those which affect an object without distorting it, but then at

the end look at something related to shadow projections. The importance of rigid transformations is especially
great because in order to build an illusion of 3D through 2D images the illusion of motion helps a lot. One

point is that motion leads to an illusion of depth through size change, and another is that it allows one to see an
object from different sides. The motions used will be mostly rotations and translations, those which occur most

commonly in the real world.

There are several reasons why it is a good idea to examine such transformations in dimensions one and two as

well as three.

12.1. Rigid transformations

If we move an object around normally, it will not visibly distort—that is to say, to all appearances it will remain
rigid. The points of the object themselveswill move around, but the relative distances betweenpoints of the object

will not change. We can formulate this notion more precisely. Suppose we move an object from one position to
another. In this process, a point P will be moved to another point P∗. We shall say that the points of the object

are transformed into other points. A transformation is said to be rigid if it preserves relative distances—that is to
say, if P and Q are transformed to P∗ and Q∗ then the distance from P∗ toQ∗ is the same as that from P toQ.

We shall take for granted something that can actually be proven, but by a somewhat distracting argument:

• A rigid transformation is affine .

This means that if we have chosen a linear coordinate system in whatever context we are looking at (a line, a

plane, or space). then the transformation P 7→ P∗ is calculated in terms of coordinate arrays x and x∗ according
to the formula

x∗ = xA + v

where A is a matrix and v a vector. Another way of saying this is that first we apply a linear transformation
whose matrix is A, then a translation by v. In 3D, for example, we require that

[ x∗ y∗ z∗ ] = [ x y z ] A + [ vx vy vz ] .

The matrix A is called the linear component , v the translation component of the transformation.

It is clear that what we would intuitively call a rigid transformation preserves relative distances, but it might not

be so clear that this requirement encapsulates rigidity completely. The following assertion may add conviction:
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• A rigid transformation (in the sense I have defined it) preserves angles as well as distances.

That is to say, if P ,Q and R are three points transformed to P∗,Q∗, and R∗, then the angle θ∗ between segments
P∗Q∗ and P∗R∗ is the same as the angle θ between PQ and PR. This is because of the cosine law, which says
that

cos θ∗ =
‖Q∗R∗‖

2 − ‖P∗Q∗‖
2 − ‖P∗R∗‖

2

‖P∗Q∗‖ ‖P∗R∗‖

=
‖QR‖2 − ‖PQ‖2 − ‖PR‖2

‖PQ‖ ‖PR‖

= cos θ .

A few other facts are more elementary:

• A transformation obtained by performing one rigid transformation followed by another rigid transformation
is itself rigid.

• The inverse of a rigid transformations is rigid.

In the second statement, it is implicit that a rigid transformation has an inverse. This is easy to see. First of all,
any affine transformation will be invertible if and only if its linear component is. But if a linear transformation

does not have an inverse, then it must collapse at least one non­zero vector into the zero vector, and it cannot be
rigid.

Exercise 12.1. Recall exactly why it is that a square matrix with determinant equal to zero must transform at
least one non­zero vector into zero.

An affine transformation is rigid if and only if its linear component is, since translation certainly doesn’t affect

relative distances. In order to classify rigid transformations, we must thus classify the linear ones. We’ll do that
in a later section, after some coordinate calculations.

Exercise 12.2. The inverse of the transformation x 7→ Ax + v is also affine. What are its linear and translation
components?

12.2. Dot and cross products

In this section I’ll recall some basic facts about vector algebra.

• Dot products

In any dimension the dot product of two vectors

u = (x1, x2 . . . , xn), v = (y1, y2, . . . , yn)

is defined to be
u • v = x1y1 + x2y2 + · · ·xnyn .

The relation between dot products and geometry is expressed by the cosine rule for triangles, which asserts that

if θ is the angle between u and v then

cos θ =
u • v

‖u‖ ‖v‖
.

In particular u and v are perpendicular when u • v = 0.
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• Parallel projection

One important use of dot products and cross products will be in calculating various projections.

Suppose α to be any vector in space and u some other vector in space. The projection of u along α is the vector
u0 we get by projecting u perpendicularly onto the line through α.

u⊥

u

u0

α

How to calculate this projection? It must be a multiple of α. We can figure out which multiple by using
trigonometry. We know three facts: (a) The angle θ between α and u is determined by the formula

cos θ =
u •α

‖α‖ ‖u‖
.

(b) The length of the vector u0 is ‖u‖ cosθ, and this is to be interpreted algebraically in the sense that if u0 faces
in the direction opposite to α it is negative. (c) Its direction is either the same or opposite to α. The vector α/‖α‖
is a vector of unit length pointing in the same direction as α. Therefore

u0 = ‖u‖ cos θ
α

‖α‖
= ‖u‖

u •α

‖α‖ ‖u‖

α

‖α‖
=

(

u •α

‖α‖2

)

α =
(u •α

α •α

)

α .

• Volumes

The basic result about volumes is that in any dimension n, the signed volume of the parallelopiped spanned by
vectors v1, v2, . . . , vn is the determinant of the matrix







v1

v2

. . .
vn







whose rows are the vectors vi.

Let me illustrate this in dimension 2. First of all, what do I mean by the signed volume?

A pair of vectors u and v in 2D determine not only a parallelogram but an orientation , a sign. The sign is positive
if u is rotated in a positive direction through the parallelogram to reach v, and negative in the other case. If u and
v happen to lie on the same line, then the parallelogram is degenerate, and the sign is 0. The signed area of the
parallelogram they span is this sign multiplied by the area of the parallelogram itself. Thus in the figure on the

left the sign is positive while on the right it is negative. Notice that the sign depends on the order in which we
list u and v.
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u

v

(u, v) oriented +

v

u

(u, v) oriented −

I’ll offer two proofs of the fact that in 2D the signed area of the parallelogram spanned by two vectors u and v is
the determinant of the matrix whose rows are u and v. The first is the simplest, but it has the drawback that it
does not extend to higher dimensions, although it does play an important role.

In the first argument, recall that u⊥ is the vector obtained from u by rotating it positively through 90◦. If u = [x, y]
then u⊥ = [−y, x]. As the following figure illustrates, the signed area of the paralleogram spanned by u and v is
the product of ‖u‖ and the signed length of the projection of v onto the line through u⊥.

u

v

v0

Thus the area is

(

[−uy, ux] • [vx, vy]

‖u‖

)

‖u‖ = uxvy − uyvx = det

[

ux uy

vx vy

]

=

∣

∣

∣

∣

ux uy

vx vy

∣

∣

∣

∣

.

The starting observation of the second argument is that shearing one of the rows of the matrix changes neither

the determinant nor the area. For the area, this is because shears don’t change area, while for the determinant it
is a simple calculation:

∣

∣

∣

∣

x1 + cx2 y1 + cy2

x2 y2

∣

∣

∣

∣

=

∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

.

Thus in each of the transitions below, neither the determinant nor the area changes. Since they agree in the final

figure, where the matrix is a diagonal matrix, they must agree in the first.

There are exceptional circumstances in which one has to be a bit fussy, but this is nonetheless the core of a valid
proof that in dimension two determinants and area agree. It is still, with a little care, valid in dimension three. It

is closely related to the Gauss elimination process.



Chapter 12. Transformations in 3D 5

Exercise 12.3. Suppose A to be the matrix whose rows are the vectors v1 and v2. The argument above means
that for most A we can write

[

1
c2 1

] [

1 c1

1

]

A = D

whereD is a diagonal matrix. Prove this, being careful about exceptions. For whichA in 2D does it fail? Provide
an explicit example of an A for which it fails. Show that even for such A (in 2D) the equality of determinant and
area remains true.

In n dimensions, the Gaussian elimination process finds for any matrix A a permutation matrix w, a lower
triangular matrix ℓ, and an upper triangulation matrix u such that

A = ℓuw .

The second argument in 2D shows that the the claim is reduced to the special case of a permutation matrix, in

which case it is clear.

• Cross products

In 3D—and essentially only in 3D—there is a kind of product that multiplies two vectors to get another vector. If

u = (x1, x2, x3), v = (y1, y2, y3)

then their cross product u × v is the vector

(x2y3 − y2x3, x3y1 − x1y3, x1y2 − x2y1) .

This formula can be remembered if we write the vectors u and v in a 2 × 3matrix

[

x1 x2 x3

y1 y2 y3

]

and then for each column of this matrix calculate the determinant of the 2 × 2 matrix we get by crossing out in
turn each of the columns. The only tricky part is thatwith the middle coefficient we must reverse sign. Thus

u × v =

(∣

∣

∣

∣

x2 x3

y2 y3

∣

∣

∣

∣

,−

∣

∣

∣

∣

x1 x3

y1 y3

∣

∣

∣

∣

,

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

)

.

It makes a difference in which order we write the terms in the cross product. More precisely

u × v = −v × u .

Recall that a vector is completely determined by its direction and its magnitude. The geometrical significance

of the cross product is therefore contained in these two rules, which specify the cross product of two vectors
uniquely.
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• The length of w = u × v is the area of the parallelogram spanned in space by u and v.
• The vector w lies in the line perpendicular to the plane containing u and v and its direction is determined by
the right hand rule—curl the fingers so as to go from u to v and the cross­product will lie along your thumb.

u

v

u × v

The cross product u × v will vanish only when the area of this parallelogram vanishes, or when u and v lie in a
single line. Equivalently, when they are multiples of one another.

That the length of the cross­product is equal to the area of the parallelogram is a variant of Pythagoras’ Theorem
applied to areas—it says precisely that the square of the area of a parallelogram is equal to the sum of the squares

of the areas of its projections onto the coordinate planes. I do not know a really simple way to see that it is true,

however. The simplest argument I know of is to start with the determinant formula for volume. If u, v, and w are
three vectors, then on the one hand the volume of the parallelopiped they span is the determinant of the matrix





u
v
w





which can be written as the dot product of u and v × w, while on the other this volume is the product of the
projection of u onto the line perpendicular to the plane spanned by v and w and the area of the parallelogram
spanned by v and w. A similar formula is valid in all dimensions, where it becomes part of the theory of exterior
products of vector spaces, a topic beyond the scope of this book.

• Perpendicular projection

Now let u⊥ be the projection of u onto the plane perpendicular to α.

The vector u has the orthogonal decomposition

u = u0 + u⊥

and therefore we can calculate
u⊥ = u − u0 .

Incidentally, in all of this discussion it is only the direction of α that plays a role. It is often useful to normalize α
right at the beginning of these calculations, that is to say replace α by α/‖α‖.

Any good collection of PostScript procedures for 3D drawing will contain ones to calculate dot products, cross

products, u0 and u⊥.
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12.3. Linear transformations and matrices

It is time to recall the precise relationship between linear transformations and matrices. The link is the notion of

frames . A frame in any number of dimensions d is a set of d linearly independent vectors of dimension d. Thus
a frame in 1D is just a single non­zero vector. A frame in 2D is a pair of vectors whose directions do not lie in a
single line. A frame in 3D is a set of three vectors not all lying in the same plane.

A frame in dimension d determines a coordinate system of dimension d, and vice­versa. If the frame is made up
of e1, . . . , ed then every other vector x of dimension d can be expressed as a linear combination

x = x1e1 + · · · + xded

and the coefficients xi are its coordinates with respect to that basis. They give rise to the representation of x as a
row array

[x1 . . . xd] .

Conversely, given a coordinate system the vectors

e1 = [1, 0, . . . , 0], . . . , ed = [0, 0, . . . , 1]

are the frame giving rise to it.

I emphasize:

• A vector is a geometric entity with intrinsic significance, for example the relative position of two points. Or,
if a unit of length has been chosen, something with direction and magnitude. In the presence of a frame, and
only in the presence of a frame, it can be assigned coordinates.

In other words, the vector is, if you will, an arrow and it can be assigned coordinates only with respect to a given

frame. Change the frame, change the coordinates.

In a context where lengths are important, one usually works with orthonormal frames , those made up of a set of
vectors ei with each ei of length 1 and distinct ei and ej perpendicular to each other:

ei • ej =
{

1 if i = j
0 otherwise.

In the presence of any frame, vectors may be assigned coordinates. If the frame is orthonormal, the coordinates

of a vector are given simply:

v =
∑

ciei, ci = ei • v .

If a particular point is fixed as origin, an arbitrary point may be assigned coordinates as well, namely those of the
vector by which the origin is displaced to reach that point.

Another geometric object is a linear function . A linear function ℓ assigns to very vector a number, with the
property, called linearity , that

ℓ(au + bv) = aℓ(u) + bℓ(v) .

A linear function ℓ may also be assigned coordinates, namely the coefficients ℓi in its expression in terms of
coordinates:

ℓ(x) = ℓ1x1 + · · · + ℓdxd .

A linear function is represented as a column array




ℓ1

. . .
ℓd



 .

Then ℓ(x) is the matrix product

[x1 . . . xd]





ℓ1

. . .
ℓd



 .

Another point to emphasize:
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• A linear function is a geometric entity with intrinsic significance, which assigns a number to any vector. In
the presence of a frame, and only in the presence of a frame, it can be assigned coordinates, the coefficients
of its expression with respect to the coordinates of vectors.

In physics, what I call vectors are called contravariant vectors and linear functions are called covariant ones.

There is often some confusion about these notions, because often one has at hand an orthonormal frame and a

notion of length, and given those each vector u determines a linear function fu:

fu(v) = u • v .

A linear transformation T assigns vectors to vectors, also with a property of linearity. In the presence of a
coordinate system it, too, may be assigned coordinates, the array of coefficients ti,j such that

(xT )j =

d
∑

i=1

xiti,j .

For example, in 2D we have

xT = [x1 x2]

[

t1,1 t1,2

t2,1 t2,2

]

.

The rectangular array ti,j is called the of a linear matrix assigned to T in the presence of the coordinate system.
In particular, the i­th row of the matrix is the coordinate array of the image of the frame element ei with respect
to T . For example,

[1 0]

[

t1,1 t1,2

t2,1 t2,2

]

= [t1,1 t1,2]

[0 1]

[

t1,1 t1,2

t2,1 t2,2

]

= [t2,1 t2,2] .

A final point, then, to emphasize:

• A linear transformation is a geometric entity with intrinsic significance, transforming a vector into another
vector. In the presence of a coordinate system (i.e. a frame), and only in the presence of a coordinate system,
it can be assigned a matrix.

In summary, it is important to distinguish between intrinsic properties of a geometric object and properties of its
coordinates.

IfA is any square matrix, one can calculate its determinant . It is perhaps surprising to know that this has intrinsic
significance.

• Suppose T to be a linear transformation in dimension d and A the matrix associated to T with respect to
some coordinate system. The determinant of A is the factor by which T scales all d­dimensional volumes.

This explains why, for example, the determinant of a matrix product AB is just the same as det(A) det(B). If A
changes volumes by a factor det(A) and B by the factor det(B) then the composite changes them by the factor
det(A) det(B).

If this determinant is 0, for example, it means that T is degenerate: it collapses d­dimensional objects down to
something of lower dimension.

What is the significance of the sign of the determinant? Let’s look at an example, whereT amounts to 2D reflection
in the y­axis. This takes (1, 0) to (−1, 0) and (0, 1) to itself, so the matrix is

[

−1
1

]

,
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which has determinant−1. Here is its effect on a familiar shape:

R R
Now the transformed letter R is qualitatively different from the original—there is no continuous way to deform
one into the other without some kind of one­dimensional degeneration. In effect, reflection in the y­axis changes
orientation in the plane. This is always the case:

• A linear transformation with negative determinant changes orientation.

12.4. Changing coordinate systems

Vectors, linear functions, linear transformations all acquire coordinates in the presence of a frame. What happens

if we change frames?

The first question to be answered is, how can we describe the relationship between two frames?

The answer is, by a matrix. To see how this works, let’s look at the 2D case first. Suppose e1, e2 and f1, f2 are two
frames in 2D. Make up column matrices E and F whose entries are vectors instead of numbers, vectors chosen
from the frames:

e =

[

e1

e2

]

, f =

[

f1

f2

]

.

We can write
f1 = f1,1e1 + f1,2e2

f2 = f2,1e1 + f2,2e2

and it seems natural to define the 2 × 2matrix

T e
f =

[

f1,1 f1,2

f2,1 f2,2

]

.

Then

f = T e
f e ,

so the matrix T e
f relates the two frames. This use of a matrix, relating two different coordinate systems, is

conceptually quite different from that in which it describes a linear transformation.

In general, suppose e and f are two frames. Each of them is a set of d vectors. Let T e
f be the matrix whose i­th

row is the array of coordinates of fi with respect to e. We can write this relationship in an equation f = T e
f e.

This may seem a bit cryptic. In this equation, we think of the frames e and f themselves as column matrices

e =





e1

. . .
ed



 , f =





f1

. . .
fd





whose entries are vectors, not numbers. One odd thing to keep inmind is that whenwe apply a matrix to a vector
we write the matrix on the right, but when we apply it to a frame we put it on the left.

Now suppose x to be a vector whose array of coordinates with respect to e is xe. We can write this relationship as

x = xe e = [x1 . . . xd]





e1

. . .
ed



 ,

again expressing the frame as a column of vectors.
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With respect to the frame f we can write
x = xf f .

We want to know how to compute xe in terms of xf and vice­versa. But we can write

x = xf f = xf (T e
f e) = (xfT e

f )e = xe e

which implies:

• If e and f are two frames with f = T e
f e then for any vector x

xe = xfT e
f .

A similar result is this:

• If e and f are two frames with f = T e
f e then for any linear function ℓ

ℓe = (T e
f )−1ℓf .

This is what has to happen, since the function evaluation

xf ℓf = xeℓe = xeT
e

f ℓe ,

is intrinsic.

Finally, we deal with linear transformations. We get from the first frame e a matrix Ae associated to A, and from
the second a matrix Af . What is the relationship between the matrices Ae and Af ? We start out by recalling that
the meaning of Ae can be encapsulated in the formula

(xA)e = xeAe

for any vector x. In other words, the matrix Ae calculates the coordinates of xA with respect to the frame e.
Similarly

(xA)f = xfAf

and then we deduce
xeAe = (xA)e

= (xA)fT e
f

= (xfAf )Ae
f

= xf (AfT e
f )

= (xe(T
e

f )−1)AfT e
f

= xe((T
e

f )−1AfT e
f ) .

Hence

• If e and f are two frames with f = T e
f e then for any linear transformation T

Te = (T e
f )−1AfT e

f .

This is an extremely important formula. For example, it allows us to see immediately that the determinant of
a linear transformation, which is defined in terms of a matrix associated to it, is independent of the coordinate

system which gives rise to the matrix. That’s because

Ae = (T e
f )−1AfT e

f , det(Ae) = det((T e
f )−1AfT e

f ) = det((T e
f )−1) det(Af ) det(T e

f ) = det(Af ) .

Two matrices A and T−1AT are said to be similar . They are actually equivalent, in the sense that they are the
matrices of the same linear transformation, but with respect to different coordinate systems.



Chapter 12. Transformations in 3D 11

12.5. Rigid linear transformations

Let A be an d × dmatrix, representing a rigid linear transformation T with respect to the frame e.

A =







a1,1 a1,2 . . . a1,d

a2,1 a2,2 . . . a2,d

. . .
ad,1 ad,2 . . . ad,d






.

Then eiA is equal to the i­th row of A. Therefore the length of the i­th row of A is also 1. The angle between ei

and ej is 90◦ if i 6= j, and therefore the angle between the i­th and j­th rows of A is also 90◦, and the two rows

must be perpendicular to each other. In other words, the rows of Amust be an orthogonal frame. In fact:

• A linear transformation is rigid precisely when its rows make up an orthogonal frame.

Any such matrix A is said to be orthogonal .

The transpose tA of a matrix A has as its rows the columns of A, and vice­versa. By definition of the matrix
product A tA, its entries are the various dot products of the rows of A with the columns of tA. Therefore:

• A matrix A is orthogonal if and only if
A tA = I ,

or equivalently if and only if its transpose is the same as as its inverse.

If A and B are two n × nmatrices, then

det(AB) = det(A) det(B) .

The determinant of A is the same as that of its transpose. If A is an orthogonal matrix, then

det(I) = det(A) det(tA) = det(A)2

so that:

• The determinant of an orthogonal matrix is ±1.

If det(A) = 1, A preserves orientation, otherwise it reverses orientation. As we have already seen, there is a
serious qualitative difference between the two types. If we start with an object in one position and move it

continuously, then the transformation describing its motion will be a continuous family of rigid transformations.
The linear component at the beginning is the identity matrix, with determinant 1. Since the family varies
continuously, the linear component can never change the sign of its determinant, and must therefore always be
orientation preserving. A way to change orientation would be to reflect the object, as if in a mirror.

12.6. Orthogonal transformations in 2D

In 2D the classification of orthogonal transformations is very simple. First of all, we can rotate an object through

some angle θ (possibly 0◦).

θ
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This preserves orientation. The matrix of this transformation is, as we saw much earlier,

[

cos θ sin θ
− sin θ cos θ

]

.

Second, we can reflect things in an arbitrary line.

That is to say, given a line ℓ, we can transform points on ℓ into themselves, points in the line through the origin
perpendicular to ℓ into their negatives. This reverses orientation.

Exercise 12.4. If ℓ is the line at angle θ with respect to the positive x­axis, what is the matrix of this reflection?

It turns out there are no more possibilities.

• Every linear rigid transformation in 2D is either a rotation or a reflection.

Let e1 = [1, 0], e2 = [0, 1], and let T be a linear rigid transformation. Since e1 and e2 both have length 1, both Te1

and Te1 also have length 1. All of these lie on the unit circle. Since the angle between e1 and e2 is 90◦, so is that
between Te1 and Te2. There are two distinct possibilities, however. Either we rotate in the positive direction

from Te1 to Te2, or in the negative direction.

e1

e2

Te1

Te2

e1

e2

Te1

Te2

In the first case, we obtain Te1 and Te2 from e1 and e2 by a rotation. In the second case, something more

complicated is going on. Here, as we move a vector u from e1 towards e2 and all the way around again to e1, Tu
moves along the arc from Te1 to Te2 all the way around again to Te1, and in the opposite direction. Now if we
start with two points anywhere on the unit circle and move them around in opposite directions, sooner or later

they will meet. At that point we have Tu = u. Since T fixes u it fixes the line through u, hence takes points on
the line through the origin perpendicular to it into itself. It cannot fix the points on that line, so it must negate
them. In other words, T amounts to reflection in the line through u.

Exercise 12.5. Explain why we can take u to be either of the points half way between e1 and Te1.

Exercise 12.6. Find a formula for the reflection of v in the line through u.
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12.7. Orthogonal transformations in 3D

There is one natural way to construct rigid linear motions in 3D. Choose an axis, and choose on it a direction.

Equivalently choose a unit vector u, and the axis to be the line through uwith direction that of u.

α

Choose an angle θ. Rotate things around the axis through angle θ, in the positive direction as seen along the axis
from the positive direction. This is called a axial rotation .

α

The motion can in some sense be decomposed into two parts. The plane through the origin perpendicular to he
axis is rotated into itself, and points on the axis remain fixed. Therefore the height of a point above the plane

remains constant, and the projection of the motion onto this plane is just an ordinary 2D rotation.
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• Every orientation­preserving linear rigid transformation in 3D is an axial rotation.

I’ll show this in one way here, and in a slightly different way later on.

Recall that an eigenvector v for a linear transformation T is a non­zero vector v taken into a multiple of itself by
T :

Tv = cv

for some constant c, which is called the associated eigenvalue . This equation can be rewritten

Tv = cv = (T − cI)v = 0 .

If T − cI were invertible, then we would deduce from this that

v = (T − cI)−10 = 0

which contradicts the assumption that v 6= 0. Therefore T − cI is not invertible, and det(T − cI) = 0. In other
words, c is a root of the characteristic polynomial

det(A − xI)

where A is a matrix representing T and x is a variable. For a 3 × 3matrix

A − xI =





a1,1 − x a1,2 a1,3

a2,1 a2,2 − x a2,3

a3,1 a3,2 a3,3 − x





and the characteristic polynomial is a cubic polynomial which starts out

−x3 + · · · .

For x < 0 and |x| large, this expression is positive, and for x > 0 and |x| large it is negative. It must cross
the x­axis somewhere, which means that it must have at least one real root. Therefore A has at least one real
eigenvalue. In 2D this reasoning fails—there may be two conjugate complex eigenvalues instead.

Let c be a real eigenvalue of T , v a corresponding eigenvector. Since T is a rigid transformation, ‖Tv‖ = ‖v‖, or
‖cv‖ = ‖v‖. Since ‖cv‖ = |c|‖v‖ and ‖v‖ 6= 0, |c| = 1 and c = ±1.

If c = 1, then we have a vector fixed by T . Since T preserves angles, it takes all vectors in the plane through
the origin perpendicular to v into itself. Since T reserves orientation and Tv = v, the restriction of T on this
plane also preserves orientation. Therefore T rotates vectors in this plane, and must be a rotation around the axis
through v.

If c = −1, then we have Tv = −v. The transformation T still takes the complementary plane into itself. Since T
preserves orientation in 3D but reverses orientation on the line through v, T reverses orientation on this plane.
But then T must be a reflection on this plane, according to the results of the previous section. We can find u such
that Tu = u, and w perpendicular to u and v such that Tw = −w. In this case, T is rotation through 180◦ around

the axis through u.
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12.8. Calculating the effect of an axial rotation

To begin this section, I remark again that to determine an axial rotation we must specify not only an axis and
an angle but a direction on the axis. This is because the sign of a rotation in 3D is only determined if we know
whether it is assigned by a left hand or right hand rule. At any rate choosing a vector along an axis fixes a
direction on it. Given a direction on an axis I’ll adopt the convention that the direction of positive rotation follows

the right hand rule.

So now the question we want to answer is this: Given a vector α 6= 0 and an angle θ. If u is any vector in space
and we rotate u around the axis through α by θ, what new point v do we get? This is one of the basic calculations
we will make to draw moved or moving objects in 3D.

There are some cases which are simple. If u lies on the axis, it is fixed by the rotation. If it lies on the plane
perpendicular to α it is rotated by θ in that plane (with the direction of positive rotation determined by the right
hand rule).

If u is an arbitrary vector, we express it as a sum of two vectors, one along the axis and one perpendicular to it,
and then use linearity to find the effect of the rotation on it.

To be precise, let R be the rotation we are considering. Given u we can find its projection onto the axis along α
to be

u0 =
(α •u

α •α

)

α

Let u⊥ be the projection of u perpendicular to α. It is equal to u − u0. We write

u = u0 + u⊥

Ru = Ru0 + Ru⊥

= u0 + Ru⊥ .

How can we find Ru⊥?

Normalize α so ‖α‖ = 1, in effect replacing α by α/‖α‖. This normalized vector has the same direction and axis
as α. The vector u∗ = α × u⊥ will then be perpendicular to both α and to u⊥ and will have the same length as
u⊥. The plane perpendicular to α is spanned by u⊥ and u∗, which are perpendicular to each other and have the

same length. The rotation R acts as a 2D rotation in the plane perpendicular to α, so:

• The rotation by θ takes u⊥ to
Ru⊥ = (cos θ) u⊥ + (sin θ) u∗ .

In summary:

(1) Normalize α, replacing α by α/‖α‖.

(2) Calculate

u0 =
(α •u

α •α

)

α = (α •u) α .

(3) Calculate
u⊥ = u − u0 .

(4) Calculate

u∗ = α × u⊥ .

(5) Finally set
Ru = u0 + (cos θ) u⊥ + (sin θ) u∗ .

Exercise 12.7. What do we get if we rotate the vector (1, 0, 0) around the axis through (1, 1, 0) by 36 ◦?

Exercise 12.8. Write a PostScript procedure with α and θ as arguments that returns the matrix associated to
rotation by θ around α.
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12.9. Finding the axis and angle

If we are given a matrixRwhich we know to be orthogonal and with determinant 1, how do we find its axis and
rotation angle? As we have seen, it is a special case of the problem of finding eigenvalues and eigenvectors. But
the situation is rather special, and can be done in a more elementary manner. In stages:

(1) How do we find its axis? If ei is the i­th standard basis vector (one of i, j, or k) the i­th column of R is Rei.
Now for any vector u the difference Ru − u is perpendicular to the rotation axis. Therefore we can find the axis
by calculating a cross product (Rei − ei) × (Rej − ej) for one of the three possible distinct pairs from the set of
indices 1, 2, 3–unless it happens that this cross­product vanishes. Usually all three of these cross products will
be non­zero vectors on the rotation axis, but in exceptional circumstances it can happen that one or more will

vanish. It can even happen that all three vanish! But this only when A is the identity matrix, in which case we
are dealing with the trivial rotation, whose axis isn’t well defined anyway.

At any rate, any of the three which is not zero will tell us what the axis is.

(2) How do we find the rotation angle?

As a result of part (1), we have a vector α on the rotation axis. Normalize it to have length 1. Choose one of the
ei so that α is not a multiple of ei. Let u = ei. Then Ru is the i­th column of R.

Find the projection u0 of u along α, set u⊥ = u − u0. Calculate Ru⊥ = Ru − u0. Next calculate

u∗ = α × u⊥ .

and let θ be the angle between u⊥ and Ru⊥. The rotation angle is θ if the dot­product Ru⊥ •u∗ ≥ 0 otherwise
−θ.

Exercise 12.9. If

R =





0.899318 −0.425548 0.100682
0.425548 0.798635 −0.425548
0.100682 0.425548 0.899318





find the axis and angle.

12.10. Euler’s Theorem

The fact that every orthogonal matrix with determinant 1 is an axial rotation may seem quite reasonable, after
some thought about what else might such a linear transformation be, but I don’t think it is quite intuitive. To
demonstrate this, let me point out that it implies that the combination of rotations around distinct axes is again a

rotation. This is not at all obvious, and in particular it is difficult to see what the axis of the combination should
be. This axis was constructed geometrically by Euler.
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P1

P2

βα

θ1

2

θ1

2

θ2

2

θ2

2

Let P1 and P2 be points on the unit sphere. Suppose P1 to be on the axis of a rotation of angle θ1, P2 on that of
a rotation of angle θ2. Draw the spherical arc from P1 to P2. On either side of this arc, at P1 draw arcs making

an angle of θ1/2 and at P2 draw arcs making an angle of θ2/2. Let these side arcs intersect at α and β on the
unit sphere. The the rotation R1 around P1 rotates α to β, and the rotation R2 around P2 moves β back to α.
Therefore α is fixed by the composition R2R1, and must be on its axis.

Exercise 12.10. What is the axis of R1R2 in the diagramabove? Deduce from this result underwhat circumstances
R1R2 = R2R1.

12.11. More about projections

If P is a point in space and f(x, y, z) = Ax + By + Cz + D = 0 a plane, then just about any point other than P
can be projected from P onto the plane. The formula for this is very simple. Suppose the point being projected is
Q. The projection ofQ onto the plane will be the point of the line through P andQ lying in the plane. The points
of the line through P and Q are those of the form R = (1 − t)P + tQ, so we must solve

f((1 − t)P + tQ) = (1 − t)f(P ) + tf(Q) = 0

to get

R =
f(P ) Q − f(Q) P

f(P ) − f(Q)
.

The explicit formula for this is ugly, unless we use 4D homogeneous coordinates. We embed 3D into 4D by setting

the last coordinate 1, making
P = (a, b, c, 1), Q = (x, y, z, 1)

and thus in homogeneous coordinates the projection formula becomes simply

R = f(P )Q − f(Q)P .

Projection in homogeneous coordinates is a linear transformation whose matrix is

f(P )I −







A
B
C
D






[xP yP zP wP ] = f(P )I −







AxP AyP AzP AwP

BxP ByP BzP BwP

CxP CyP CzP CwP

DxP DyP DzP DwP






.

This is an especially pleasant formula because it continues to make sense even if P is at infinity. Also, it respects
our interpretation of points as row vectors and affine functions as column vectors.


