L A

¢ N
k »)

L a'
(D
QD
=
()
—_
|
-

L 8
g
T
-
T
(»!

lewpoints

STEPS Toward Expressive Programming Systems,
2011 Progress Report Submitted to the National
Science Foundation (NSF) October 2011

(In alphabetical order) Dan Amelang, Bert Freudenberg,
Ted Kaehler, Alan Kay, Stephen Murrell, Yoshiki Ohshima,
lan Piumarta, Kim Rose, Scott Wallace, Alessandro Warth,
Takashi Yamamiya

This material is based upon work supported in part
by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

VPRI Technical Report TR-2011-004

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

NSF Award: 0639876
Year 5 Annual Report: October 2011
STEPS Toward Expressive Programming Systems

Viewpoints Research Institute, Glendale CA

Important Note For Viewing The PDF Of This Report

We have noticed that Adobe Reader and Acrobat do not do the best rendering of text or scaled bitmap
pictures. Try different magnifications (e.g. 118%) to find the best scale. Apple Preview does a better job.

VPRI Technical Report TR-2011-004

The STEPS Project For The General Public

If computing is important—for daily life, learning, business, national defense,
jobs, and more—then qualitatively advancing computing is extremely important. For
example, many software systems today are made from millions to hundreds of
millions of lines of program code that is too large, complex and fragile to be
improved, fixed, or integrated. (One hundred million lines of code at 50 lines per

page is 5000 books of 400 pages each! This is beyond human scale.)

What if this could be made literally 1000 times smaller—or more? And made
more powerful, clear, simple, and robust? This would bring one of the most
important technologies of our time from a state that is almost out of human

reach—and dangerously close to being out of control—back into human scale.

An analogy from daily life is to compare the great pyramid of Giza, which is
mostly solid bricks piled on top of each other with very little usable space inside,
to a structure of similar size made from the same materials, but using the later
invention of the arch. The result would be mostly usable space and requiring
roughly 1/1000 the number of bricks. In other words, as size and complexity increase,

architectural design dominates materials.

The “STEPS Toward Expressive Programming Systems” project is taking the
familiar world of personal computing used by more than a billion people every
day —currently requiring hundreds of millions of lines of code to make and
sustain—and substantially recreating it using new programming techniques and
“architectures” in less than 1/1000 the amount of program code. This is made
possible by new advances in design, programming, programming languages, and

systems organization whose improvement advances computing itself.

VPRI Technical Report TR-2011-004

2011 One Page Summary

STEPS is now to the point where it is more fun to use and demonstrate than to talk and write about.
Quite a bit of the original proposal is now working well enough to give all our presentations and write
this entire report for the NSF and Viewpoints Research Institute websites. In the STEPS system, this
document is live: the examples are actually runnable demos; the code shown is changeable and testable,
etc.

A large part of the work over the last year has gone into making the test versions more real and usable.

Another addition is the presentation of code as “active essays” that explain the code by showing how to
build it using the live code in STEPS as just another media type (see Appendix I for an example).

The balance has been directed towards creating additional visible features to round out STEPS
comprehensive graphics abilities, and to make a number of invisible “chains of meaning” needed for our
continuing experiments “at the bottom” to determine the best ways to connect the high-level problem-
oriented languages in which STEPS is programmed to the “bare metal” CPUs of today. The latter issues
are partly for pragmatic reasons (it is all too easy to use up thousands of lines of code at the bottom), and
for esthetic reasons (the code at the bottom is often ad hoc and messy, especially when considerable
optimizations need to be done).

One departure from the original plan is that our code-count was to be just of “runnable meaning” and not
of the optimizations needed for real-time operations of the system. The idea was that one could
reasonably prototype and debug the meanings on a supercomputer, and then add optimizations from the
side that would not pollute the meanings (and where the meanings could be the ultimate tests of the
optimizations). However, our graphics system ran its meanings faster than we had anticipated, and we
found that doing just a little optimization was sufficient to make it pragmatically useful. This turned the
project to make the first round of implementation usefully runnable. We have so far been counting all the
code, including the optimizations even at “the bottom”. It is called “Frank” because it is a bit of a
Frankenstein’s monster, and yet cute enough to be fun and very worthwhile to use for many real tasks.
Previous STEPS Reports

This summary and report are presented as incremental results to previous years. The direct line of reports
starting with the original proposal can be found at [STEPS Reports]. However, for the convenience of
present readers, we have gisted and recapped some of the previous work.

Yet To Be Done

Besides more rounding off of what has been made so far, we still have several more engine-room tasks to
do, including: making the next version of our compact TCP/IP (that was used to make an experimental
website) and installing it in a more comprehensive fashion, making the migratory caching architecture
and mechanisms for moving computations around the Internet while eliminating most of traditional OS
code, adding more processors to our suite of heterogeneous hosts, and more.

And we need to take another pass at the “connective tissue” of Frank and move the system from what is a
well functioning patchwork to a more beautiful scaffolding. Frank has been invaluable in providing a
working model of personal computing that is very close to the goals of STEPS without being so pristine
as to cripple our degrees of freedom in inventing and designing.

Next STEPS for STEPS

STEPS is about modeling the main parts of personal computing “from the user down to the metal”, and
its goals do not include improving personal computing. However, the best way to do the modeling in
many cases has been to come up with much better designs. We have put many things on our list for
“later” that we would like to do in STEPS that are outside the current STEPS goals. For example, the
project has to provide the standard productivity tools, but we have been able to do this without making a
big breakthrough in how applications are made. Yet the larger field desperately needs better ways to
make applications for both professionals and end-users, and we intend to pursue this after next year.

VPRI Technical Report TR-2011-004

Introduction and Context

STEPS is a 6 Year Project

We were originally funded for 5 years by NSF with matching funding from a private donor. The natural
pace of the project required less funds per year than planned, and has resulted in enough funding for one
more year. Though it is difficult at the beginning of an exploratory research project to accurately estimate
person-years needed, it looks as though our estimate will be pretty accurate, but just spread over six
years instead of five. This report is therefore a “progress so far report”, and next year will be the final one.
The Origin of the STEPS Project

The STEPS research project arose from asking embarrassing questions about many systems (including
our own) such as: “Does this system have much too much code and is it messier than our intuition
whispers?” Almost always the answer was “yes!” We wanted to find ways to write much smaller code,
have it be more understandable and readable, and if possible, to have it be “pretty”, even “beautiful”.
STEPS Aims At “Personal Computing”

STEPS takes as its prime focus the modeling of “personal computing” as most people think of it, limiting
itself to the kinds of user interactions and general applications that are considered “standard”. So: a GUI
of “2.5D” views of graphical objects, with abilities to make and script and read and send and receive
typical documents, emails and web pages made from text, pictures, graphical objects, spreadsheet cells,
sounds, etc., plus all the development systems and underlying machinery:

* Programs and Applications — word processor, spreadsheet, Internet browser, other productivity SW

¢ User Interface and Command Listeners — windows, menus, alerts, scroll bars and other controls, etc.

* Graphics & Sound Engine — physical display, sprites, fonts, compositing, rendering, sampling, playing

* Systems Services — development system, database query languages, etc.

* Systems Ultilities — file copy, desk accessories, control panels, etc.

* Logical Level of OS - e.g. file management, Internet and networking facilities, etc.

* Hardware Level of OS - e.g. memory manager, processes manager, device drivers, etc.
Our aim was not primarily to improve existing designs either for the end-user or at the architectural level,
but quite a bit of this has needed to be done to achieve better results with our goals of “smaller, more
understandable, and pretty”. This creates a bit of an “apples and oranges” problem comparing what
we’ve done with the already existing systems we used as design targets. In some cases we stick with the
familiar — for example, in text editing abilities and conventions. In other areas we completely redesign —
for example, there is little of merit in the architecture of the web and its browsers — here we want vastly
more functionality, convenience and simplicity.
Previous STEPS Results
The first three years were spent in general design and specific trial implementations of various needed
functionalities for STEPS. These included high-quality anti-aliased 2.5D graphics that covers the same
range of features as used in commercial personal computing, a viewing architecture, a document
architecture, connection to the Internet, etc. Each of these was designed and implemented in a “runnable
math” custom programming language that is highly expressive for its problem domain.

The fourth year was spent making a “cute Frankenstein monster” —called “Frank” —from these separate
pieces. This has provided a workable “criticizable model” to help design the nicer, more integrated model
that is the goal of STEPS.

Assessing STEPS

We set a limit of 20,000 lines of code to express all of the “runnable meaning” of personal computing
(“from the end-user down to the metal”) where “runnable meaning” means that the system will run with
just this code (but could have added optimizations to make it run faster). One measure will be what did
get accomplished by the end of the project with the 20,000 lines budget. Another measure will be typical
lines of code ratios compared to existing systems. We aim for large factors of 100, 1000, and more. How
understandable is it? Are the designs and their code clear as well as small? Can the system be used as a
live example of how to do this art? Is it clear enough to evoke other, better, approaches?

VPRI Technical Report TR-2011-004

A number of the parts of STEPS now have a complete “chain of meaning” down through the various
language systems to directly use the multicore CPUs we employ. We are still under our code limit of
20,000 lines, but we are not completely free of the scaffolding that has been supporting the Frank system.
Until this happens, only relative judgments can be drawn.

Reflections On The Role Of Design

The STEPS Project was originally funded by NSF from a pool allocated to investigations in “The Science
of Design”!. The best results so far in STEPS have been design intensive—the parts that turned out to be
the most understandable wound up using the kinds of design processes associated with mathematics,
and the successful parts of the rest have much in common with structural engineering design.

The most surprising reflection at this point is just how much ground was covered with the latter. The
large amount of covered ground was good —in that there is a lot that needed to be done compactly,
especially in the “productivity applications” area of the project—but was also a bit underwhelming
because just doing a lot of work on “parts and wholes”, partitioning modules and module boundaries,
and other classic well known and recommended practices, resulted in a small high functioning system.

One way to think about design in this context is that a lot can be done before “something algebraic” can
be pulled out of the needed organizations. And it is tempting to stop there—because one part of the
engineering criteria has been achieved —“it works pretty darn well!.

But the lack of deeper mathematical integrity will show up when the scales and ranges are increased, and
it will not be clear where or how to tack on the new code.

This is where our field could use a real “Science of Design”, but we don’t really even have a real “Design
Engineering” subfield. We do think that a “Science of Art” and an “Art of Design” do exist.

Science of Art

Part of our aim is to practice a “science of the artificial”, paralleling how natural science seeks to
understand complex phenomena through careful observations leading to theories in the form of
“machinery” (models) — classically using mathematics — that provide understanding by recreating the
phenomena and having the machinery be as simple, powerful and clear as possible. We do the same, but
draw our phenomena from artifacts, such as human-made computer systems.

We use many existing and invented forms of mathematics to capture the relationships and make “runnable
maths” (forms of the maths which can run on a computer) to dynamically recreate the phenomena.

Art of Design

We balance science with design because the phenomena we generate only have to be like what we study; we
are not reverse engineering. So the “math part” of science is used here to make ideal designs that can be
much simpler than the actual underlying machinery we study while not diluting the quality of the
phenomena. We have been struck by how powerfully the careful re-organization of long existing “bricks”
can produce orders of magnitude improvements.

1 Originally a concept developed at CMU by Newell, Simon, Freeman and others.

VPRI Technical Report TR-2011-004

The STEPS Project in 2011

The overall goal of STEPS is to make a working model of as much personal computing phenomena and
user experience as possible in a very small number of lines of code (and using only our code). Our total
lines of code-count target for the entire system “from end-user down to the metal” is 20,000, which —if we
can do a lot within this limit—we think will be a very useful model and substantiate one part of our
thesis: that systems which use millions to hundreds of millions of lines of code to do comparable things
are much larger than they need to be.

We think this is a better way to state our goal, because it is difficult to impossible —essentially apples vs.
oranges—to come up with good code count comparisons between similar features in different systems.
So when we say we can produce virtually all of 2.5D anti-aliased alphaed personal computer graphics in
457 lines of program, we can let that stand on its own as being “very small” —at least 100 times smaller
than other extant systems.

Another “orange”: because there are several abstractly similar large scale design centers for personal
computing (Apple, Microsoft, Linux/Open Office, etc.) we can devise a design center of our own that will
be convenient to implement, and deliver “comparable” experiences—meaning that an end-user would
feel they are experiencing “personal computing” but that it might be difficult to crisply quantify the
comparative amounts of code in both systems. On the other hand, we are shooting for factors of 100 and
even 1000, so there should be fairly easy qualitative comparisons—for example, being able to do quite a bit
of the personal computing experience in a very small code count (such as 20,000 lines for everything).

Along the same lines, we can separate the “web experience” from how it is actually implemented. In this
case—because the web is a very poor design—we have implemented an “alternative web” which delivers
the same experience to the end-user but with a completely different and much more compact approach to
design. We carry out similar finessing in other situations—for example, by eliminating the need for an
“operating system”.

The main goal is to model the phenomena of personal computing, not per se to improve its design—and
we have kept to that. Still, we wound up making many consolidations and improvements in order to
allow our models to be really “small and nice”.

Our general approach is to pick an area whose parts seem to be related —for example: 2.5D anti-aliased
alphaed computer graphics—try to find the mathematical relations that cover the desired phenomena,
design a “problem oriented language” (POL) that is a “runnable math” version of the mathematics,
implement that language, then use it to write the program code for the target area.

We have stitched together a working system from these parts—a kind of “Frankenstein’s monster”, called
“Frank” —to better understand how the POLs can work together, and to provide integrated functionality
that can match up with a user-interface design. For more history and context, see [STEPS Reports].

"Clear!"

Frank in 2010 - Just coming Frank in 2011 - Supported by a steampunk wheel-
alive chair but heading out into the

VPRI Technical Report TR-2011-004 world

0319 ‘s3duds buipjoy
Joj |aued 3jno apls

SU0[32NJ3SU0D
|le bupjew Joj ealy

SjUBWIND0P JO Spuly [|e
40 s|leuquinyy buimoys
Joj |oued 3jqisde|jod

(Ganofke D

$20p 129 ¢ uo Seip 10 YPIP snow y
ays jo ya 1addn ayy ye dn apid siapap au Jo e
ou are asayy Dug " anoker, uonng angq ayy ssaad
‘sajna JnoAe] OU YiIa UONENYIS J[Nejap Ay 33 O

S3|NY ON YIIM Xog V U] S1a397

*10[0D pue az1s ‘3[)s

‘adeys sadosd oy sey Apease p o8ers node] oy

e saarue yd4[S e uaypy °10[0d %3} 10 ‘BzZIS pansap

AU JO J333] € JO uoBdINYSU0d ‘(e ‘plog) siseydwa

‘Sjuoj jo sanuie jo speiap Ay yia |Sureap woxy
Paay a1k am “1a)33[e Jo uoyou [erauad e Pns YA

‘swesBoxd

SGuuapuar awngsod [euLou s wajsAs ayy Suisn usais

Ay uo ease uomsodwod ayy ojur parapual st Palqo

1039] V' 1ana] e A[[eai jou st 1 j1 uaaa xa) ur paoerd
aq ued sapsadoid asoyy sey jey awngsod Auy

-aj8uepar e £q papunoq

aq ues pue ‘[10 010> ‘adeys sey jey; awnjsod Aue
WOy ApewW St 1apa] Yora ‘sed [eauad jsow aiy uy

oooo

uoISNIP BUIMOYS UOREINWIS :Z 84nbly

saouop ateaud pue 5N 4q papuny st 1sload snyL,

E_».Tu...usl_nvﬁwsses-_.is__aiﬁ_

“aur] 1xau ay) uo Jrey
IAUI0 Ay PUE AUL| AUO JO PUI AP JE PIOM Ay Jley
JUEM JUOP IAL "AUI[AUO UO A[2IRUA ST PIOM Ped
yeyy os deim piom, op 03 st wajqoxd urews ayy

“J50] 03 811 WOy JApIO
UE 2ARY SIDNI[AL "UIIIIS IY) JO BAIR UR UT SIANI]
syt afuewre pue ppy 1xa) e jean o} st o8 Ayl

4SIUY,, WoJy p|3ld 3xaL e Bulp|ing

“pasn Suraq st 101pa Ay AIYM Ajsnonunuod
SI0M 0} ARy [[Im }1 asnedaq jejs o) aved pood
e ayi swaas se, jo ydesBered, e 3no Suifeq
£01 puodsal pue 3suas Ued SIAPEIRYD 1X3) [EnpIAIpul
ey safessow Jo ppay,, e Suisn jsnl waysds Suyipa
pue jnode 1xa) e weaSord am pmod ‘apdwexa 104

*swiajqoad Surunuerford

AWOS JOJ [[2M NIOM UED SHUAWILONAUA JO sped

oisutur se saessaw Sunnquisip jo Afis | SpRY
pue sapnaed,, ayy 1oyiaym ajednsaaut o) juem apy

“§204N0S POOJ PAIAAOISIP 0F J0F

syue d[ay ued yarym spednuay jo sprex) usop Surdep

Suipnpur sueaw jo fpuea e Aq ajedunuIWod
LS1199,, 3S0UM , [EWIUE AT PAINGLISIP,, © IE SjUY

uopaNposu|

POOJ puncse BuluLIEMS S3uY T B4nbig

This year we are able to write this entire report in the Frank part of STEPS, including producing the PDF
version for NSF’'s web site. We can give comprehensive high-quality, high-resolution presentations using

STEPS which include live code and in situ demos, and which show working versions of a number of the

document types derived from the STEPS “universal document”.

Frank

VO ‘B[EpUSL “inyrsul ypaessay sutodmary
BUITYSYQO DIIYSOA “Ja[Yaey pa,

LSIUY WoId P|31d IXSL V e OL MOH

Japioq ~ Jojod> ~ xoq Jopuem

512u103 papunou 316603 11 abewy J3ue3u0d Uo ojey 3P
Jsuuyy J9pIoq dspioq jeipes 114 jetpes @3edndnp dn y1d
a9yIy3 J9pi0q aepioq Juaipesb 1113 3uaipesb 53Ua3U0d Ul pUzZ. peq

YIPIM Japioq J8paoq pijos 14 pios (dxa) wopues

mopeys

mopeys abew;
mopeys 1305 mopeys jeipes doys
Mmopeys piey mopeys juaipesb

395340 mopeys mopeys pijos

219 ‘}2UJI]U| ‘|lewd ‘s3I
Se UYdNS S92IN0S3J |RUIDIXD
le Joj s|aued 9jqisdejjod

/| zsabed any sjue

3dudS | MaN Hasuj adeys

jua3u0) (] JUSWINo0g

p]
xoal Aeid o ayoeom
X0qI'pa1nquasIa 31N Jq0®
Xx0q|'PIysoA-wowuep sowoim
xoq|'dgyaluep jev0im
xoq|'s|enuauodx3 uappiH
X0(|'8343-2|eDRIBWO0 weds
x0q|"}93yspeasds-uda yeig”
xoq|zsabed any sjue yses &
xoq|abed uoneinsp |e20] uas
X0q|'uoneInag 1531e xoqu®
= upe
e 9jas f‘ 4
£do> T ¢ m“_
and)

.sease |jids, pue ,s9|9and,, YIm IN9 ,31A1s-uoqqry,,

Overview of the Frank System being used to make Appendix | of this report

VPRI Technical Report TR-2011-004

Summary of how we have approached the following key parts of the STEPS project:

Graphics Email GUI Data Bases No Operating System
Sound & Movies Internet “Browsing” Desktop Publishing Scripting Simulation of “Time”
Graphical Objects & Views “Universal Documents” Presentations Explanations Dealing with CPUs
“Files” Text Objects Spreadsheets Making Languages Importing & Exporting
Graphics

A new set of mathematical relations was derived for the involvement of an arbitrary polygon and a pixel.
This gave rise to a rendering scheme that directly produces excellent antialiasing. “Runnable math” —
called “Gezira” —and a POL for it— called “Nile” — were devised and implemented. The several dozen
standard compositing rules, shading, stroking, gradients, sampling, shadowing, etc. —457 lines in total —
were written in Nile and debugged to make a working graphics system, strong enough to be used for
Frank, and to do all the graphics required for personal computing (and hence this report).

Nile:"Ken Iverson meets Christpher Strachey"

type Point = (x, y DO |t J_[Reset) CombineEdgeSamples : EdgeSample >> EdgeSpan
type Bezier = (A, BT T PuImTy (x, y, A, H) =0
type EdgeSpan = (x, y, ¢, 1 : Real) Y (x', y', a, h)
type EdgeSample = (x, y, a, h : Real) ify' =y
if x' = x
| (a : Real) | : Real A''=A+a
{-aifa<0, a} H'=H+ h
else
(a : Real) a (b : Real) : Real 1l={x"'"-x-1if |H| > 0.5, 0}
{aifa<b, b} > (x, y, |Al @1, 1)
A' =H+a
(a : Real) ~ (b : Real) : Real H' =H+h
(a+b) /2 else
+ P, >> (x, ¥y, |A| @1,)
”(f7yQ) (Qy P',}(I + 1 QI 5 z) Dec Beziers : Bezier >> EdgeSample A' =a
v (A, B, C) H' =h
inside = (LAl =1 CIvIAT=T[CTI) >> (x, y, |A]l a1, 0)
if inside.x A inside.y
\‘,p) — mm(.r + l.ma.r(r. P)), P=|lA]al C]| Rasterize : Bezier >> EdgeSpan
o ’ - w=Px+1- (C.x~A.x) = DecomposeBeziers - SortBy (@x)
mm(y . l.mux(y, Py)) h=Cy- Ay - SortBy (@y) - CombineEdgeSamples
>> (P.x + 1/2, P.y + 1/2, w x h, h)
else
ABBC =(A~B) ~(B~C)
1, min = | ABBC |
w(P) = ;'.'7(1))11 Py) + P, max = [ABBC |
nearmin = | ABBC - min | < 0.1
m(y(P)z — Pz) = Py nearmax = | ABBC - max | < 0.1
M = {min if nearmin, max if nearmax, ABBC}
<< (M, B~C, C) << (A, A~B, M)
(:m,'rfm_qr:(/ﬁ) = oa(y(A),yw(A))) +
o(y(w(A)),v(w(B))) ~
o((w(B)). 7(B))

min| L covernge(AB;)|, 1) "The Formula" in Nile (~ 45 LOC)

The Formula

(Above) The basic rendering formula for the Gezira graphics system in the “runable math” computer
language “Nile” was previously about 80 lines of code. It has now been reformulated for clarity and
simplicity, and currently only requires 45 lines of Nile code.

VPRI Technical Report TR-2011-004

The Nile language could be described as a data flow stream language with functions at the nodes whose
expression form reminds one a bit of APL —both large-scale structures (pixel maps) and small-scale features
(partial word arithmetic for color and alpha components) are automatically comprehended.

The most significant development of the past year for the Nile subproject has been the creation of a
multithreaded runtime for executing Nile programs. Part of the standard demo is to provide Nile with access
to the 4 cores (and 8 threads) of a MacBook Pro and have it automatically map computational processing to

computations.

Several new developments in launch

the Nile system include
adding a few more lines of
Nile to include more graphical
features (more control over
gradients, Gaussian shadows,
etc.) There are now 457 lines
of Nile code used to produce
all of the STEPS graphics.

faster
slower
zoom
pause/resume
Cpu usage
quit

The screenshot shows 5000
anti-aliased translucent

of threads: 8

rotating “falling” characters
with all 4 cores and 8 threads
fully engaged in the
computation.

The code examples here are all
live and can be edited to see

their effect. \‘ 4 }“ \ ‘—“ 5 >- 7 £
SHIECR R Aok 442444
I% .\‘ R 5 V) 5 X4) 5 4

The runtime provides a substantial performance boost on multicore hardware, with an almost linear
speedup per core. We see our approach as a successful, though partial solution to the parallel
programming problem, because Nile programs, being very-high level, are implicitly parallel. This means
that programmers are not required to concern themselves at all with the details of parallel execution.

The multithreaded runtime is used by our 2D vector graphics renderer to support other STEPS
subprojects while maintaining good performance. To gauge performance potential farther into the future,
we have also run one of our rendering benchmarks on a 40-core machine, resulting in a nearly 30 times
speedup (see figure 2). We believe that this demonstrates that implicit parallelism provides an avenue for
high performance that doesn't sacrifice the minimalism and clarity that are important goals of the STEPS

project.
35

30
25

20

Speedup

1 10 20 30 40

Cores

VPRI Technical Report TR-2011-004

Example of live
editing of deep
graphics code.

MyComp : Compositor
V (a, b)

>>a+ b x(1-a.a)

close

Here we are removing
the subtraction of the
translucency (alpha)
component from the
compositing rule.

MyComp : Compositor
V (a, b)

>>a+ b x (1)

reset

close

Recently, the syntax of Nile has evolved to more closely match the notation of mathematical statements.
This is to improve the clarity of programs that borrow heavily from traditional mathematical concepts.
This is a continuation upon the existing mathematics support in Nile, which already included the
definition of new types (e.g., vectors, bezier curves, colors) and operators on these types (e.g., dot
product, interpolation, normalization). Like their mathematical equivalents, operators in Nile can be
defined and applied using infix, outfix, prefix or suffix notation. Nile also permits the use of Unicode

characters for operators and variable names. Here we give some examples of the mathematical syntax of
Nile.

An expression for linear interpolation using a Unicode character for a variable and juxtaposition for
multiplication:

oax - (1 -a)y
Definition of the absolute value operator, which makes use of the conditional expression syntax modeled
after piecewise function notation:

| (a:Real) | : Real
{-a,ifa<oO
a, otherwise }

Definition of a 3D vector type and dot product operator:

type Vector = (a:Real, b:Real, c:Real)
(v1:Vector) « (v2:Vector) : Real
((al, a2, a3), (b1, b2, b3)) = (v1, v2)
albl + a2b2 + a3b3

Complex number type and multiplication operator:

type Complex = (a:Real, b:Real)

10
VPRI Technical Report TR-2011-004

(z1:Complex) (z2:Complex) : Complex
((@a, b), (c, d)) = (21, z2)
(ac - bd, bc + ad)

Affine transformation matrix type, point type, and multiplication operator:
type Point = (x:Real, y:Real)
type Matrix = (a:Real, b:Real, c:Real, d:Real, e:Real, f:Real)

(M:Matrix) (P:Point) : Point
(a,b,c,d, e, f)y=M
(x,y)=P
(ax + cy + e, bx + dy + f)

Definition of a Nile process for transforming a stream of beziers by a matrix:
type Bezier = (A:Point, B:Point, C:Point)
TransformBeziers (M:Matrix) : Bezier >> Bezier

V (A, B, C)
>> (MA, MB, MC)

Sound & Movies

Much of Nile is about ways to do digital signal processing efficiently and powerfully, so it can be used to
generate and sample sounds as well as images. Similarly, Nile runs fast enough to be able to render
picture frames fast enough to show movies.

Graphical Objects and Views

There is really just one kind of graphical object in STEPS—we can think of it as an entity that “can view”,
has “shape” and “can carry”. They are recursively embeddable, so all composition and 2.5D layerings are
built up from this basic mechanism. All search is done at the “organizational level”, etc.

“Files”

In STEPS, the equivalent of files are storage representations for STEPS objects (see page 7 for how these
are unified in the UL) These are thought of as being part of the “mobile network of virtual machines”
which “float over the Internet” (see “NoOS” section) that make up STEPS computations.

Email

As mentioned, email is done with standard STEPS documents, and is presented to the user as part of the
generalized way to look at external resources (see page 7). One view of this is to think of “gatherings” of
objects (a generalization of folders as dynamic retrievers of object types—aka “spreadsheet cells”). One
gathering is called “Inbox”, etc.

Internet “Browsing”

The equivalent of the “web experience” is provided in a very similar way to email. “Web pages” are just
standard STEPS universal documents that contain hyperlinks, and can be browsed using the universal
“In/Out” interface (see page 7). It is important to note that the main tool for most “web” perusals—
Google—only exists on one’s personal computer as a very simple client interface. All the search
machinery is external. We use this also. The experience of using the Web is very easy to provide using
STEPS documents. And, it is much much easier to make “web” content using the WYSIWYG authoring
provided by the current Frank system. (The Web should have used HyperCard as its model, and the web
designers made a terrible mistake by not doing so.)

11
VPRI Technical Report TR-2011-004

Generalized “Universal Document” Objects

How To Make A Text Field From Ants’
Ted Kaehler, Yoshiki Ohshima

Viewpoints Research Institute, Glendale, CA

TRRBSN L :
Figure 1: Ants swarming around food

Introduction

Ants are a “distributed hive animal” whose “cells”
communicate by a variety of means including
laying down trails of chemicals which can help ants
get to discovered food sources.

We want to investigate whether the “particles and
fields” style of distributing messages as intrinsic
parts of environments can work well for some
programming problems.

For example, could we program a text layout and
editing system just using a “field of messages” that
individual text characters can sense and respond to?
Laying out a “paragraph” of “ants” seems like a
good place to start because it will have to work
continuously while the editor is being used.

Building a Text Field from “Ants”

The goal is to create a text field and arrange its
letters in an area of the screen. The letters have an
order from first to last.

The main problem is to do "word wrap” so that
each word is entirely on one line. We don't want
half the word at the end of one line and the other
half on the next line.

What if the text is too long and goes over the margin?

*This project is funded by NSF and private donors

Figure 2: Simulation showing diffusion

goo

In the most general case, each "letter” is made from
any costume that has a shape, color or fill, and can be
bounded by a rectangle.

Any costume that has those properties can be
placed in text, even if it is not really a letter. A letter
object is rendered into the composition area on the
screen using the system’s normal costume rendering
programs.

With such a general notion of a letter, we are freed
from dealing with the details of families of fonts,
emphasis (bold, italic), construction of a letter of the
desired size, or text color. When a glyph arrives at
the layout stage, it already has the proper shape,
style, size and color.

Letters In A Box With No Rules

To see the default situation with no layout rules,
press the blue button "layout”. Since there are no
rules, all of the letters pile up at the upper left of the
field. A mouse click or drag on a letter does nothing.

Example of a “universal document” being used for “desktop publishing”.

VPRI Technical Report TR-2011-004

12

Text Objects
Text is organized as “paragraph objects”. This paragraph is written in/using a paragraph object.

Nile can render from standard font formats, so the “text problem” is to do the different visual layouts that
are needed for personal computing, and to allow WYSIWYG editing in ways that are completely
standard. There are many scales of layout in personal computing, and we did not want to write special-
purpose code for them. Instead, we thought it would be useful, compact and fun to adapt a “particles and
fields” (or “ants”) metaphor to give the individual components rules to follow and let them sort out and
solve the layout constraints.

We made a POL—called “Ants” —for this. The total number of rules needed for a WYSWYG editor and
layout paragraph is 35. An “active essay” explanation of how the layout is carried out in Ants is found in
Appendix I. The code examples are live and can be run, edited and experimented with by the reader (but
not in the PDF version of this report).

How To Make A Text Field From Ants’
Ted Kaehler, Yoshiki Ohshima

Viewpoints Research Institute, Glendale, CA
Example of making text
paragraphs using distributed
objects and “particles and
fields”.

We have “released” the text
characters in one of the
paragraphs, and they are
roaming freely.

When they are told to “feel”
the fields around them, they
will start to line up and
follow the leader to format

themselves.
Figure 1: Ants swarming around food Figure 2: Simulation showing diffusion D D lD
e a
Introduction h glne‘ o € ta hoo o hpon
e rr

Ants are a “distributed hive animal” whose “cells” n é.! € a:,’ 1 u 8, g Ckb Py i ! bc
communicate by a variety of means including a C‘Pl c h tet? l‘b € ““4 Sy b yl
avi . N seale whi . . 0o
laying d'ou n trails of chemicals which can help ants Any costume that has those properties can be
get to discovered food sources.

We want to investigate whether the “particles and
fields” style of distributing messages as intrinsic
parts of environments can work well for some

(AU SRR K P,

placed in text, even if it is not really a letter. A letter
object is rendered into the composition area on the
screen using the system's normal costume rendering

programs.

GUI
Graphical user interfaces are hard to design, and we are fortunate that the STEPS goals are to mimic
personal computing phenomena (so we don’t have to invent a new GUI from scratch).

Our approach—to use universal documents rather than separate applications—results in great simplicity,
but requires a user interface that can exhibit and handle many properties.

For STEPS, we have adopted a “ribbon UlI” style (see page 7 of this report). The ribbon style of interaction
is essentially a Mac-style tool-bar, but instead of pull-down menus from the tool-bar, the next level items
are distributed sideways in a “ribbon” of “bubbles” each of which shows the most likely properties and
commands. Each bubble has an initially closed “spill area” for commands and properties that don’t fit in
the bubble.

The Ul tries to show as much as possible. Very careful choices of subdued coloration and visible features
allow quite a bit to be shown without “a visual slap in the face”.

In the STEPS interface, many similar operations that are different in standard personal computing have
been consolidated. For example, dealing with “files”, “web”, and “email” are all abstractly similar and
have to do with “bringing things in, and sending things out”. There is just one interface for all, and one
way to browse and search for resources.

13
VPRI Technical Report TR-2011-004

Desktop Publishing

In the original invention of today’s style of personal computing at Xerox PARC, the basic idea was to “do
desktop publishing right” and everything else could then be made from this. Visually, this certainly
makes sense (desktop publishing has to be able to portray everything that can be thought of and
displayed). The PARC scheme used “dynamic language scripting” to give more functionality to the
graphical objects to allow “applications” (which were really what would be called “mashups” today).
This approach was later taken in HyperCard, and we still think it is much better than the standard
practice of hermetically sealing in rigid features using statically dead languages.

We take the dynamic approach here, and in total. So, for example, the STEPS GUI itself is actually a “DTP
document” and can be edited in just the same ways as other more familiar document types. What are
normally “separate applications” in a “productivity suite” are just standard universal documents used in
different ways. Some of these are detailed here, but we emphasize that these are just different uses and
perspectives on the same basic framework (see page 7 for the generalized authoring interface).

Presentations

Presentations are standard documents, often in landscape aspect (but not necessarily so) whose
sequencing of builds and “slide flipping” are done by the STEPS general scripting facilities. In one sense,
no extra code needed to be written to get “presentations” from “desktop publishing”; in STEPS they are
one thing. Sequencing of “build effects” and “slides” is done by the general scripting system. All of the
illustrations in this report are actually “live slides” from presentations, and this report itself is also a
“presentation”.

Document|_In & Out | Content Script Vanguard DC Post Talk Revisions|/”"

[Palatino Linotype| ¥ [10]¥

A <Al

&inbox Vanguard DC Post Talk Revisio
Sent Vanguard DC Test for PDF.odp
o Trash NSF Report In ODF.odp
Draft Vanguard DC Final Talk - 651.
»Spam Vanguard DC - Test 3.0dp
Vanguard DC - Test 2.0dp
Vanguard - Test 1.odp
DX Final Talk.odp
DX - Test 10.0dp
DX - Test 9.0dp
DX - Test 8.0dp
DX - test 7.0dp
DX - test 6.0dp
DX - Test 5.0dp
Hidden Exponentials.odp
DX - Test 4.0dp
NSF Report Tests.odp

wlocal
mremote
=ODF
mcache

Here is a “slide” (just a regular universal document page) being made for an elaborate talk with live demos
that was given in early October.

14
VPRI Technical Report TR-2011-004

Spreadsheets and Cells

Spreadsheets in STEPS are just another “graphical object with dynamic properties” —a sibling to text
paragraphs (which they contain among other things). We like spreadsheets, but think of individual cells
as the important idea, and so our spreadsheets are actually documents of cells that can be organized in a
variety of ways.

] A B G D E F I G H] 1 K Iz M N

1 |Amalgamated Inc.

2

3 July '11 |Aug '11 Sept'110Oct'll Nov 'll Dec 'll Jan'l2 Feb'l12 Mar'12 Apr'l12 May '12 June '12 Total

4 |Operations Expenses

5 |Office Space 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000, 12000
6 |Shipping/Fed Ex 100 100 100 100 100 100 100 100 100 100 100 100 1200
7 |Computer Equipment/Q 5000 2000 5000 2000 2000 5000 2000 2000 2000 5000 2000 2000, 36000
8 |Storage 120 120 120 120 120 120 120 120 120 120 120 120 1440
9 |Legal 250 250 250 1000 250 250 250 1000 250 250 250 1000 5250
10 HR Services 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000, 24000
11|Financial Services 10000 5000 5000 5000 5000, 10000 5000 5000 5000 5000 5000, 10000, 75000
12 Consulting Services 15000, 15000/ 15000, 15000, 15000, 15000, 15000, 15000, 15000, 15000, 15000, 15000| 180000
13 Biz Licenses/Insurance/| 6000 1000 250 250 250 250 250 250 250 250 250 1000, 10250
14|T&E 5000 5000/ 10000 5000 5000 5000/ 10000 5000 5000/ 10000 5000/ 10000/ 80000
15 Petty Cash 100 100 100 100 100 100 100 100 100 100 100 100 1200
16

17 Subtotal [W] 31570 38820 31570 30820 38820 35820 31570 30820 38820 30820 42320 426340

B17= =B5 + B6 + B7 + B8 + B9 + B10 + B11 + B12 + B13 + B14 + B15)
For example, a cell can be embedded in any text. They can be embedded in “tables” (to make what

appears to be an ordinary spreadsheet). They can be organized as lists, etc. Below are examples from a
one page “active essay” explaining the concept of Standard Deviation. Active cells are used freely. The
yellow one shows the average — and drives the height of the horizontal bar. The gray cells are embedded
in the text and show values from the sliders in the graph and results of calculations.

The Standard Deviation is a widely used measurement of
variability or diversity of a set of measurements. Volitility in
the stock market is the Standard Deviation of the value of a
stock. Standard Deviation shows how much variation or
"dispersion” there is from the "average" (the mean). A low
standard deviation indicates that the data points tend to be
very close to the mean, whereas high standard deviation
indicates that the data is spread out over a large range of
values.

A useful property of Standard Deviation is that, unlike
the variance, it is expressed in the same units as the data. A

Let's use the vertical position of the sliders below as the data values. Move the sliders up and down.
data values. Move the sliders up and down. I:I

ST

i

The first step is to find the average of the data samples.
The average is the sum of the values divided by the number
+55 +31 +

281 . There are

of values. The sum of the values is 71
31 +-9 +31 +71

7 data values. The averageis 40 .

which is

Now that we know the average, we can find out how
much each sample differs from the average. Subtract the
average from each sample. We need the square of each

952 + 221 + 84 +
952 and take the average of

difference. Add up the squares
84 + 2415 + 84 +

those to get 684 . This called the variance. Taking the

26 . Itisin the

same units as the data values. For a normal distribution (or

square root gives a Standard Deviation of

bell curve) of data, 68.2% of the values will be within one
standard deviation of the average.

Uy @
By [ID

The first step is to find the average of the data samples.
The average is the sum of the values divided by the number
of values. The sum of the valuesis 16 +-3 +31 +
16 +-9 +31 +71 153 . There are

7 datavalues. The averageis 22.

which is

Now that we know the average, we can find out how
much each sample differs from the average. Subtract the
average from each sample. We need the square of each
difference. Add up thesquares 34 + 618 + 84 +

34 + 952 + 84 + 2415 and take the average of
those to get 603 . This called the variance. Taking the

square root gives a Standard Deviation of 25 . Itis in the

Our cells are also more general than those of a standard spreadsheet. They can be thought of as
“dynamic retriever-calculators” at the bottom, and as “generalized viewers” at their top visible
manifestation. Many interesting and useful applications can be built quickly and easily with
spreadsheet cells (we show an example later in this report).

15
VPRI Technical Report TR-2011-004

Data Bases and Spreadsheets
HyperCard automatically indexed everything for search. The Mac does this for most files that have
searchable content. Google does this for most web pages. STEPS does this for its “pages”. We can see that
today, a personal computing “data base” is a way to make documents that allow various kinds of search
engines to extract, index, and invert content for fast retrieval. A particularly useful object for retrieval is
our generalized spreadsheet cells, which are constantly “looking” for objects that satisfy their formula,
and which gather these objects into a “comprehension” that can be a further object of filtering.

An example of a “data base
application” in STEPS is the
“Condor PDA" application we
did with the cooperation of SAP,
using some of their design
ideas and salepeople data.

The “app” is just a standard
document with text and
embedded cells.

The cells reach out to a global
corporate database, which is
also portrayed as a
spreadsheet.

Many “end-user” apps can be
made directly from the STEPS
scripting facilites.

Scripting

In a sense,
Frank system is built from
dynamic scripting. Most
of the scripts for the
general end-user are seen
and created by using a
tile-based scripting
system (similar to Etoys
and Scratch) but able to
reach much deeper to get
operations and resources.
Any button or property
can be dragged from the
Frank ribbon Ul
dropped on a page to
create a script line.
Similarly, any script or
value can be dragged into
the ribbon UI to make a
button or property.

the entire

and

Commission Invoiced

Quota Target

Paid Effective Income

Paid Commission

John Jones |

Revenue this year)

Percent commission collected
Percent revenue collected

Percent quota achievement

Gross invoiced Revenue (all accounts)

Adjustments (all accounts)

Effective Invoiced Revenue

(gross - adjustements)

Quota Achievement (sum of Effective Invoiced

Paid revenue (all accounts)

December 2010

1 |Account name
2

3 |Shop Mart

4 |Local Machinery
5 |High Clothes

6 |Shop Mart

7 |Local Machinery
8 |High Clothes

9 |Shop Mart

10| Local Machinery
11 |High Clothes
12

13|) Dance Studio
14 | ABC Warehouse
15|Zees Nursery
16|) Dance Studio
17 |ABC Warehouse
18 |Zees Nursery
19) Dance Studio
20 /ABC Warehouse
21|Zees Nursery
A3 =

VPRI Technical Report TR-2011-004

|Month

[

|December 2010
|December 2010
|December 2010
|November 2010
|November 2010
|November 2010
|October 2010
|October 2010
|October 2010
}December 2010
|December 2010
|December 2010
|[November 2010
|November 2010
|November 2010
|October 2010
|October 2010
|October 2010

|Sales Rep

W

|John Jones
|John Jones
|John Jones
|John Jones
|John Jones
|John Jones
|John Jones
|John Jones
|John Jones
%Sam Smith
|Sam Smith
|Sam Smith
|Sam Smith
|Sam Smith
|Sam Smith
|Sam Smith
|Sam Smith
|Sam Smith

D
gross

12910
10000
6230
3457
8934
8323
9467
25854
6584

1681
2614
6223
5197
5733
4568
3400
5170
9514

"Sam Smith

Pecember 2010

Percent dommission collected
Percent revenue collected

Percent quota achievement

Gross invoiced Revenue (all accounts)

Adjustments (all accounts)

Effective Invoiced Revenue
(gross - adjustements)

Quota Achievement (sum of Effective Invoiced
Revenue this year)

Commission Invoiced

Quota Target

Paid revenue (all accounts)

Paid Effective Income

Paid Commission

E F_ | G

adjusted |invoiced |paid
[

1634 0 |0
1000 9000 |9000
580 5650 5650
169 3288 |0
2362 6572 6572
1759 6564 |0
362 9105 [9105
1743 24111 |22000
3274 3310 [3310
634 0 %0
846 1768 [1768
280 5943 |5943
1153 4044 |0
2112 3621 [3621
1949 2619 |0
392 3008 [3008
1823 3347 [3347
3194 6320 |6320

16

Explanations

One of the goals expressed in the original proposal that NSF requested is that the system be presented as
“A Compact And Practical Model of Personal Computing As A Self-Exploratorium”. Doing the
“Exploratorium” part well requires that all parts of the system can not only be navigated to, but that safe
“hands-on” experiments be possible by interested perusers. One way to do this is to have the code in the
system presented in the form of “active essays” which “explain by coaching” the end-user how to build
the code and why it works. An example of this in STEPS—which explains and builds a text layout facility
using a rule-based POL —is included in Appendix I.

We are still learning how to do this to allow clarity and deep but safe experiments. Clarity is more
difficult than “safe”, because there are a variety of ways to isolate experiments so that even extreme
measures can be tried and still allow a safe “UNDO” to be carried out. One of these is the “Worlds”
mechanism of STEPS (discussed in the next section).

For the purpose of the present project, clarity in STEPS is achieved primarily by careful writing, and
through having the appearance and organization of our POLs be as important as their functionality. One
could imagine a future system in which the user interface was a pro-active agent that could actively help
perusers learn the system via answering questions and guidance.

An interesting trade-off is between the conventional route of using a single language that does not fit any
problem area well, and this plus other practices leads to immense code-counts, vs. our tack of making a
variety of POLs, each of which does its job with tiny code-counts. We think (and assert) that in the end,
human brains are overwhelmed by size, and that the additional overhead of learning several languages
more than pays for itself in producing compact “mind-sized” code. There are no substantiations of this at

present, but it would be an interesting experiment to try as a follow-on to this project.

How To Make A Text Field From Ants’

Ted Kaehler, Yoshiki Ohshima

Viewpoints Research Institute, Glendale, CA

Introduction

Ants are a “distributed hive animal” whose “cells”
communicate by a variety of means including
laying down trails of chemicals which can help ants
get to discovered food sources.

We want to investigate whether the “particles and
fields” style of distributing messages as intrinsic
parts of environments can work well for some
programming problems.

For example, could we program a text layout and
editing system just using a “field of messages” that
individual text characters can sense and respond to?
Laying out a “paragraph” of “ants” seems like a
good place to start because it will have to work
continuously while the editor is being used.

Building a Text Field from “Ants”

The goal is to create a text field and arrange its
letters in an area of the screen. The letters have an
order from first to last.

The main problem is to do "word wrap” so that
each word is entirely on one line, We don't want
half the word at the end of one line and the other
half on the next line.

What if the text is too long and goes over the mfrgin?

“This project is funded by NSF and private donors

Figure 2: Simulation showing diffusion

ooo

In the most general case, each "letter” is made from
any costume that has a shape, color or fill, and can be
bounded by a rectangle.

Any costume that has those properties can be
placed in text, even if it is not really a letter. A letter
object is rendered into the composition area on the
screen using the system’s normal costume rendering
programs.

With such a general notion of a letter, we are freed
from dealing with the details of families of fonts,
emphasis (bold, italic), construction of a letter of the
desired size, or text color. When a glyph arrives at
the layout stage, it already has the proper shape,
style, size and color.

Letters In A Box With No Rules

To see the default situation with no layout rules,
press the blue button "layout”. Since there are no
rules, all of the letters pile up at the upper left of the
field. A mouse click or drag on a letter does nothing,

Text Field Specification

Rules

The behavior of the letters is defined by a set of
rules. Each rule is in a rule editor window. At the
top is the name of the rule, followed by the rule itself.
The rule has a list of clauses. Each clause has a guard
after the When. If the guard is true, then execute the
Do part.

"return” means evaluate the expression and hand it
back to the place where the rule was called. We exit
the rule at the return and do not perform the later

clauses.

Extremely Simple Layout Methods

Random Layout

As a simple first experiment, we will put each letter
in a random place in the text field. Set the xy
position of each letter to a random value within the
field’s width and height.

Press Accept in the rules for layout and place.

Press the layout button below. What happens when

you press it a second time? Press reset to put all

Accept]

letters at the upper left.

layout
When whole contents isEmpty not
Do rule tell whole contents first
to 'place'.
rule processActions.

place Accept
When | amNil

Do return me
When Always

Do my positionBecomes

whole width atRandom,
whole height atRandom.
rule tell my successor to ‘place’.

ay out text (Creset)

All in One Line

Now let's redefine place to arrange all letters in one
long line. Position each letter just to the right of its
predecessor.

The one line example inherits the rules of the random
layout and overrides the place rule.

The line is clipped by the edge of the field

place Accept]

When | amNil
Do return me
When my index = 1
Do my position (whole shape leftAtY 0)+4 ,
4

return rule tell my successor to 'place'.
When Always
Do pred := my predecessor.
my pivotPosition
pred left + pred pivotOffset x +
pred width ,
pred pivotPosition y.
rule tell my successor to 'place’.

ay out text

(esen)

The main problem is to do "word w

VPRI Technical Report TR-2011-004

17

Making Languages

Our approach to making languages uses higher-level PEG parsers (with backup) that can match and
transform general objects rather than just strings. This allows these transformation engines to be used for
various kinds of pipeline optimizations as well as for parsing text according to a syntax. This follows a
long tradition of such systems reaching back into the 60s. What’s new here is the convenience, simplicity
and range of the systems we’ve built. The PEG parsing languages—the main one we use is OMeta—can
easily make themselves. The semantics of the transformations are drawn from the host languages that the
PEG parsers are made in, and these run the gamut from very high level systems (Smalltalk or Lisp-like) to
systems that are close to the CPU (e. g. the Nothing language we’ve made—a BCPL-like “lower-level-

high-level language).

—_—
. . . OMeta2 subclass: #OMeta2Calculator \L
Live demonstration of using our Era\ibr:)?z):P . -
OMeta system to translate an)
i i i i addExpr =
?rlthmetlc expressmn" lm,:o . an a);asxpr:x(w|"—"):opmulsxpr:y [{op. x. y}
Abstract Syntax Tree”. This is a | mulExpr
standard form in which all the e
operator and operand relationships mulExprx (| cp bt
are made into a uniform structure for | e

i primExpr =
further processing. e -

e | number

OMeta follows a long tradition of | identifier
pattern directed translation. Its rumba
power lies in its convenience, range spaces <digit+>
and flexibility, e.g. it can also identifier =
transform the Abstract Syntax shaces <leter (e
structures.

An example of Nile
code with “the hood”
on. It seems as
though we merely

write a few lines of
higher level code and
it somehow is able to
execute to produce a

composited result.

Nile code for “Over”

Nile code with the

hood popped.

Nile to Nile-AST Nile-Ast to Nothing Nothing to N-AST

Nile-AST for “Over” Nothing Code for “Over” N-AST code for “Over

i86 code for “Over”

86 code i86 CPU(code to actions)

When we "pop the hood" on Nile code, as shown in the figure, we see a long chain
of translations to finally produce code that the CPU can recognize and execute (in
the top case it is the brown lozenge all the way to the right feeding into the Intel-
type CPU). Note that everything is CPU independent until the very last stage.

Why such a long chain? Partly because of the transformations needed to
"understand" and rearrange the Nile code for efficient processing. These extreme
measures are taken because there are certain parts of the system (like Nile graphics)
that have to run as fast as possible.

VPRI Technical Report TR-2011-004

ARM CPU (code to actions)

i}

ARN"Code A

ARM code

0 actions)

“NoOS = No Operating System”

In the conventional sense, STEPS does not really have an “operating system”, nor does it use one. Instead
the STEPS system is thought of as existing on an Internet of linked physical computers as a virtual
network of communicating virtual machines (“real objects”).

Today’s physical computers themselves have virtualized versions of themselves manifested as
“processes” which have their own confined address spaces. The STEPS strategy is to map its networks of
communicating real objects over the physical-and-virtual mechanisms provided by the physical
hardware. In short, to STEPS, the world of physical computing resources is viewed as caches for its
mobile computations.

The “NoOS” model for STEPS. The circles are physical computers, the light blue thick arrows are physical network connections. The
red hexagons are “object/processes”; the dark blue arrows are messages. The user of a distributed mobile computation will have
objects close by to create a Ul, views, and controls. The code needed on each physical computer for resource allocation is tiny.

Much of this is future work for the STEPS project. One of our influences has been David Reed’s 1978 PhD
thesis [NETOS], and we have previously implemented several versions of this [Croquet]. Another
influence was the [Locus] migrating process operating system of heterogeneous hardware done by Gerry
Popek and colleagues in the 80s.

In order for a computer to act as a cache for STEPS, something does have to be written, and one could call
it an “operating system”. In fact, it would be very much like the parsimonious kernels for OSs that have
been done neatly and nicely over the years by individuals (for example the Linux kernel in about 1000
lines of code by Linus Torvalds—and this followed the original notion of Unix that almost all of it be
vanilla code; only the bare essentials should be special). The bloat that followed (Linux is really large
these days!) is mostly a result of various kinds of dependencies, poor design, and perhaps even the weak
paradigms of “economies of scale” and “central shared facilities”.

By restricting the local code on a physical computer to simple caching and safe access to resources, we
think that STEPS can emulate the inspiring small TCP/IP kernels which have allowed the Internet to scale
by many orders of magnitude without themselves getting polluted by dependencies.

19
VPRI Technical Report TR-2011-004

Simulation of “Time”

Traditional system designs allow the CPU(s) to determine “time” and then try to guard against what this
implies in various ways. An equally old —but not mainstream —approach is to “simulate time” in various
ways and run computations that are governed by “designed time”. For example, for robot programming
in the 60s, John McCarthy wanted to use logical reasoning and to advance time. He accomplished this by
labeling “facts” with the “timeframe” in which they were true. Logical reasoning with no races or
contradictions could be carried out in each timeframe, and new facts (the robot changing location, etc.)
would be asserted in a new timeframe. One of the ways STEPS simulates time is via worlds.

A world is a new language construct that reifies the notion of program state. All computation takes place inside a
world, which captures all of the side effects—changes to global and local variables, arrays, objects’ instance
variables, etc.—that happen inside it. Worlds are first-class values: they can be stored in variables, passed as
arguments to functions, etc. They can even be garbage-collected just like any other object. A new world can be
“sprouted” from an existing world at will. The state of a child world is derived from the state of its parent, but the
side effects that happen inside the child do not affect the parent. (This is analogous to the semantics of delegation
in prototype-based languages with copy-on-write slots.) At any time, the side effects captured in the child world
can be propagated to its parent via a commit operation. [Worlds]

4 pliom
g pliom

N = = J = =

(p's identity j (p's identity
x x x X x X
y y y y y y

Projections/views of the same object in three different worlds The state of the universe after world C has done a commit

p := WPoint x: 1y: 2.
W := World thisWorld sprout. (A) | | | ‘
weval: [p x: p x - 1]. ®) . fe
py:s. © e o
w commit. @ i —
w w w w E TR I
id reads writes id reads writes B =
L] 1]
ke Habd
pw.J parent pw.l pere .l
: y ! ! YB i H ;E : ' y@ :
“oplevelword ¢ toplevelworid |t toplevelworid t top-level world
(A) (B) (©) (©)
Example of a painting system using worlds at the
Example of successful commit individual pixel level

Having implemented worlds-enabled versions of Smalltalk’s principal collection classes, and ensured that
the design gave suitable performance on various basic use cases, we set up a simple demonstration of how
one could interact with Frank in multiple independent worlds. In the figure below —"Setup 1"—the user
has selected the airfare cell to make it appear in the world palette on the right-hand side.

Setup 1 v A B c o
1 date item |amount World 1
2| April 23,2010 |air fare, southwest | x 198 198
3| April 23,2010 |taxi, BUR to AMI 28
4| April 24, 2010 |parking, S)C 30
5 (—— TOTAL 257

20
VPRI Technical Report TR-2011-004

~ A B C
1 date item amount

Setup 2 2| April 23, 2010 |air fare, southwest 198 World 1193
3 [April 23, 2010 |taxi, BUR to AMI 28)
4 April 24, 2010 parking, SJC 30 S
5[e TOTAL 257)

6)k
I

7

In "Setup 2" two further cells have been added: the total cell, and the thumb up/down indication calculated
from that total.

=
~ A B C
Usage 1 I i
date item amount
- - ‘ World 1 World 2 World 3

2 April 23, 2010 air fare, southwest 298 198 248 X208
3| April 23, 2010 [taxi, BUR to AMI 28| 56 306 356
4 | April 24, 2010 |parking, SJC 30

G}

TOTAL 356) O Q
6 -’ |

7

In "Usage 1" the user has sprouted two further sibling worlds, and has entered a different air fare for
each; the worlds' independent calculations reveal that two of these cases get a thumbs-down.

Usage 1 3 2 £ = o
S ltem amounti Wordl World2 World 3
April 23, 2010 |air fare, southwest 198 108 248 208
3| April 23, 2010 |taxi, BUR to AMI 0l — B e
4 April 24, 2010 | parking, SJC 30 S s y—
L p— TOTAL 228)) Q
6

7

C3 =

"Usage 2" shows the result of the user manipulating the taxi-fare value, which is still shared between all

worlds. Setting it to zero changes the total in every world, bringing the amount in World 2 back under
the threshold for a thumb-up.

TCP/IP
TCP/IP is a marvel of an idea and design, done by very good designers. A typical version of TCP/IP

done in C is about 20,000 lines of code (which makes it a comparatively small program). There have
been much smaller versions of TCP/IP in several thousand lines of C.

Most interesting ideas have more than one fruitful way to view them, and it occurred to us that,
abstractly, one could think of TCP/IP as a kind of “non-deterministic parser with balancing
heuristics”, in that it takes in a stream of things, does various kinds of pattern-matching on them,

deals with errors by backing up and taking other paths, and produces a transformation of the input in
a specified form as a result.

Since the language transformation techniques we use operate on arbitrary objects, not just strings (see
above), and include some abilities of both standard and logic programming, it seemed that this could
be used to make a very compact TCP/IP. Our first attempt was about 160 lines of code that was robust

enough to run a website. We think this can be done even more compactly and clearly, and we plan to
take another pass at this next year.

21
VPRI Technical Report TR-2011-004

Dealing with CPUs — High Level Language Solutions For Low Level Domains
We place this topic last—but not least—in this report both because of the size of the discussion and
because we have been pursuing several parallel strategies in this crucial —and “code-eating” —domain.

Our goal is to find high-level abstract descriptions of systems, but realistic performance is also a
necessity. A pattern that we see often is that the DSLs built for high-level descriptions of implementation
and optimization themselves become targets for high-level descriptions and in particular optimizations,
just to make the system run fast enough. An awkward and complicated 'optimization tower of babel' is
avoided by giving our DSLs the ability to act on their own implementation and optimizations, flattening
the 'tower' into a collection of reflexive and metacircular mechanisms. The line between strategy and
implementation, between coordination and computation, is eliminated -- or at least guaranteed to be
eliminable whenever necessary.

The same pattern occurs in end-user applications written in general-purpose languages. Optimization
and implementation mechanisms that will be useful in specific situations cannot be predicted in advance.
Eliminating all barriers to potential future needs, and dealing gracefully with unanticipated
requirements, means our system description language has to be able to rewrite its own implementation --
including primitives and even execution model. To have a useful influence on the implementation of a
system, a high-level language for strategy and coordination is destined either to be paired with other
DSLs working at much lower levels, or to evolve into something more general that is designed to support
its own necessary vertical diversity.

For a variety of reasons, we want to count every line of “meaning-code” that has to be written to do
STEPS. This despite that the lines of code needed to make C, C++, Java, etc., and their IDEs are not
counted in the standard systems whose phenomena we are modeling. Thus we need to be able to do (a)
our own “bottom” and (b) the IDEs for all our languages within our target code-count. This means that
we have to invent systems that can move from the very high level POLs that efficiently handle the
various domains of STEPS all the way down to generating the binary code that a typical CPU of today
can execute.

This is not so difficult per se, but an additional constraint is that we would really like to run “what needs
to be run quickly” —such as the Nile graphics code—fast enough to allow the whole “chain of meaning”
to be efficient enough for real-time use. This is not part of the original STEPS goals—in the sense that we
only have to count “meaning code that can run” and not the optimizations—the original idea was that it
would be sufficient if the “meaning-code” could be run fast enough on a supercomputer.

However, this new goal arose from esthetic considerations as Nile and other parts of the system started
working well. In other words, it would be really nice™ if we could pull off a system in which the
“meaning-code” not only ran successfully, but where it would run fast enough to be useful on a laptop.

This is the current case for STEPS with C modules at the bottom. The optimization processes of most C
compilers successfully produce code that combined with modern CPUs runs everything in real-time.

But (a) C systems are quite large themselves, (b) we don’t think C pays its way very well at the low level,
and (c) C is far from being pretty, and thus doesn’t fit in with the rest of the POLs we’ve made.

For the last year, we have been pursuing two paths—Nothing, and Maru —leading to making a system
that can join the high level to the low level, and especially run the computationally intense parts of STEPS
fast enough. These two systems have somewhat extreme and different points of view.

Nothing is based on the predecessor to C—BCPL—which is a very low level language couched in an
Algol-like form. [Nothing]

Maru is based on a self-compiling Lisp-like language that takes a fairly high level semantics and moves
directly to machine code. [Maru] This builds on the “COLA”s work of the last 4 years.

22
VPRI Technical Report TR-2011-004

The initial benchmarks for both Nothing and Maru are to be able to:

— self-compile themselves

— write their own garbage collectors and other storage management in themselves

— run the complete Nile language chain down to the CPU without using C anywhere.

Nothing
C is still used to make Nothing and make its garbage collector. The GC will soon be rendered in Nothing.

But Nothing does run the entire Nile language chain including all the Nile run-time without any C code,
and can produce identical results to the Nile system that is currently used by STEPS (which does use
some C).

The way the Nile runtime works was generalized. Instead of expecting each kernel to run only when all
of its input is ready, then run to completion and die, the Nothing version keeps running any kernel that
has anything to do until they have all stopped. Nothing also allows kernels to have multiple input and
output streams. The kernels are parallel processes. The first test of the runtime was with the circuit that
produces fibonacci numbers.

b2
start-0 ——| start-1

b3

b1
b6
/ add > print
k start-l%

split

b7

start-N first transmits N on its output stream, then just copies input to output. split copies its input to
both of its outputs. add takes a number from each of its inputs and transmits their sum. print just copies
inputs to outputs but prints everything it sees.

Maru

When Maru compiles itself to machine code, it does not have to include or link with any hand-written C
at all. It still uses a few standard library routines provided as additional services by the host operating
system (for buffered input/output operations to the terminal and to the file system) but these could easily
be replaced with the underlying operating system calls, since they are just wrappers around the latter.

Maru has its own GCs written in Maru (one non-moving and the other generation-scavenging, both of
them precise).

Maru does not yet run the complete Nile language chain. It is estimated that the Nile source (the 457 lines
of code that describe STEPS graphics) will run in about a month. It will take another month or so to write
and get running the lower-level language in which to express the Nile runtime.

Maru is a vertically-extended description language that bridges the gap between desirability of high-level
representations and easy manipulation of low-level details. It is simultaneously an extensible, high-level
language for strategy and coordination, and an intermediate representation for programs and semantics
from a wide range of high- and low-level languages. Many projections are possible from the Maru IR:
forward onto different architectures and execution mechanisms, and backward onto different views or
syntactic presentations of its meaning. Most critical is its metacircularity: it provides low-level
mechanisms that can implement new high-level abstractions for describing new high- and low-level
mechanisms.

23
VPRI Technical Report TR-2011-004

High-level features include higher-order functions, extensible composition mechanisms and extensible
data types. These are used throughout Maru's description of itself and to build mechanisms for
compiling that description to an implementation and runtime support system. Major components
designed to be reusable include a PEG-based parser generator, an AST abstraction (supporting objects
and primitive types, and operations on both), an evaluator for compile-time execution of ASTs (to
analyze and manipulate ASTs or other data structures), and extensible mechanisms for code generation
(including instruction selection and register allocation). The latter phases provide several points of entry
for programming language implementations to target. The compile-time AST evaluator provides hosted
languages with a low-cost mechanism to provide their own metalinguistic and introspective facilities
during compilation, aided again by the system's metacircularity: analyses and optimizations are
described using the forms and processes that they analyze and optimize.

The first serious language project in Maru was Maru itself. It is now stable enough to begin non-trivial
experiments with other programming languages and paradigms. A Smalltalk-like language has been
built as a thin veneer over Maru, using Maru's own PEG-based parsing and built-in evaluation
mechanisms, which can run substantial pieces of code. The second serious language project began
recently: an implementation of the Nile stream-processing language.

Nile-in-Maru's front end is a page-long parsing expression grammar that Maru converts into a parser
producing abstract syntax trees specialized for Nile semantics. Type inference and other analyses are
performed on these trees to prepare them for code generation, with possible targets including other
compiled languages (such as C), machine code for various architectures, 'rich' binary formats, and virtual
machine code.

Most significant in the embedding of Nile in Maru is that the system is self-contained, independent of
external tools, and smaller than previous prototypes. In addition to running the system as an 'offline’
Nile compiler, we are also able to enter Nile programs interactively from the terminal or from text
supplied by a graphical programming environment, for example.

Initially the target for code generation is an equivalent C program, to establish a performance baseline
and for comparison with previous work on generating C from Nile programs. Direct generation of
machine code (via the reusable back-end components in Maru) will follow soon, as will the design and
implementation of a simple (compared to C) low-level language in which to express Nile's runtime
support. The generation of efficient machine code for Nile is a significant goal for the extensible
framework in the Maru code generator, as is the provision of information specialized to whatever extent
is necessary for building rich environments for measurement and debugging of Nile programs.
Advances made in these areas for Nile will be immediately useful for all languages hosted by Maru,
including itself.

24
VPRI Technical Report TR-2011-004

Importing and Exporting

Quite a bit of work was done to make it easier to interface Frank with the rest of the world, including
being able to import OpenOffice file formats (virtually all of an OpenOffice Impress file can be imported).
This has allowed us to experiment with real world presentations using very elaborate desktop media that
include many of the features found in standard productivity tools. A special ability is that the slides in an
Impress file can have a reference to Frank media pages and these will be inserted during the importation
process. The result is a Frank document using Frank scripting and Frank demos that can be used as a
“super-and-live PowerPoint” for giving dynamic presentations.

Another major accomplishment has been the ability to export standard PDF files (all of the Frank
constructions can be exported as a PDF file, including this report).

Experiments
We built a "MicroSqueak" graphics system as a minimal-system experiment. From a tiny 250kB image we
can call on Gezira to render Bezier paths that interact with user events.

We defined a variant syntax for OMeta that can be read from a single text file rather than as individual
methods. We also developed a simple module system that allows this OMeta variant to be loaded into

a MicroSqueak-based image as a module. Using this syntax and module system, a new compiler can be
defined and executed from a command-line interface.

A Squeak bytecode compiler was written in a parser generator based on the "leg" system. From the code
of the regular Compiler written in Squeak, it can generate a module for the above-mentioned module
system. Thus we can bootstrap Squeak from the state where there is no Squeak compiler. Along the way
we added memoization to the parser generator, greatly improving its performance.

We've been experimenting with a new object system that explores an architecture in which objects are
more loosely coupled than at present. It employs a tuplespace-based event notification mechanism, and
elevates the role of our spreadsheet-cell-like abstraction.

We ported the Squeak VM to the Google Native Client. We also experimented with dynamic code
generation within Native Client. We were able to copy code for a function and execute it. This is a proof
of concept that we can run Nothing, or Maru with dynamic code-generation, in the Chrome browser.

Training And Development
Daniel Amelang continues as a graduate student at UCSD while working on his PhD thesis on the Gezira/
Nile streaming graphics system at Viewpoints Research.

Outreach Activities

Alan Kay and others on the team presented this research at a variety of conferences and meetings
throughout this most recent reporting period resulting in sharing the work to small and large groups of
people in related academic, research and business communities around the world. Following is a list
highlighting those talks, demos and presentations.

November 2010

Yoshiki Ohshima and Ian Piumarta spoke at Kyoto University, Kyoto, Japan. Ohshima:Modeling a
computer system: the STEPS project, and Piumarta: A high-level model of programming language
implementation Complex
http://www.media.kyoto-u.ac.jp/ja/services/accms/whatsnew/event/detail/01628.html

25
VPRI Technical Report TR-2011-004

December 2010

Alan Kay presented at I/ITSEC 2010 (Immersive Infantry Training for US Marine Corps, Modeling
Simulation and Training Conference) on Adaptability and Complex Decision-Making, in Orlando,
Florida.

http://www iitsec.org/about/Pages/HighlightsFromLastIITSEC.aspx

January 2011
Alan had meetings with staff from Department of Education to share and discuss ideas on computer-
based learning using our research as basis for discussion.

March 2011

Alan was invited to participate in President Obama's educational event at TechBoston Academy - A
Boston Public School for Technology & College Preparation. The President was joined by Secretary of
Education Arne Duncan and Melinda Gates. The event was intended to highlight the importance of
providing America’s students with a high quality education so that they can be successful in the 21st
century economy.

Alan gave a keynote address at the SRII (Service Research & Innovation Institute) Global Conference in
San Jose, California. The annual SRII Global Conference is an annual conference focused on connecting
Services to Science and Technology and is a unique opportunity to build liaisons with senior leaders from
the industry, research organizations, academia as well as the government organizations from all around
the world to address the "mega challenges" of Service industries in a holistic manner.
http://thesrii.org/index.php/keynote-speakers

Ian Piumarta was invited to speak on open systems at the ReGIS-Forum (Research Environment for
Global Information Society) in Tokyo, Japan. The forum was attended by high level government
/ministry officials, academics, and senior level business people from Japan.
http://www.re-gis.com/gis/74-e.html

April 2011

Dan Amelang presented "The Nile Programming Language: Declarative Stream Processing for Media
Applications" at The SoCal Programing Languages and Systems Workshop, Harvey Mudd College,
Claremont, CA.

Alan visited Carnegie-Mellon University and shared this work with Prof. Ken Koedinger and others from
the computer science department.

May 2011
Alan presented to a group at Northrop Grumman comprised of lead technologists and CTOs from within
the Northrop businesses in Los Angeles, CA.

Ian Piumarta presented our research at Kyoto University to students from the school of Social Informatics
and Engineering.

June 2011
Alan Kay gave a talk to undergraduate and graduate students in Computer Science and Engineering at
UC San Diego.

July 2011

Alan Kay, Yoshiki Ohshima, and Bert Freudenberg presented this research at a day-long colloquium to a
group of researchers and academics at the Hasso-Plattner Institut in Potsdam, Germany.
http://www.tele-task.de/archive/series/overview/844/#lecture5819

26
VPRI Technical Report TR-2011-004

Alan gave the banquet keynote talk at ECOOP 2011 (European Conference on Object Oriented
Programming) in Lancaster, UK.
http://ecoopll.comp.lancs.ac.uk/?q=content/keynote-speakers

Ian Piumarta presented his work at FREECO’11, an ECOOP 2011 workshop in Lancaster, UK. Papers
presented are part of the publications section of this report.
http://trese.ewi.utwente.nl/workshops/FREECO/FREECO11/proceedings.html

Yoshiki Ohshima and Alex Warth presented their "Worlds" work - Controlling the Scope of Side Effects -
at ECOOP 2011 in Lancaster, UK. Paper presented is part of the publications section of this report.
http://ecoopll.comp.lancs.ac.uk/?q=program/papers

Yoshiki Ohshima presented "The Universal Document Application of the STEPS Project" at the demo
session of ECOOP 2011 in Lancaster, UK.

August 2011
Alan presented work at a gathering of the Intel PC Client Group in Santa Clara, CA.

Alan presented to Prof. Ken Perlin and his students at New York University (NYU).

September 2011
Alan participated in a Georgia Tech sponsored event - the Georgia Tech Center for 21st Century
Universities with Rich DeMillo, Roger Schank and others.

October 2011
Alan presented at TTI Vanguard's "Taming Complexity Conference" in Washington DC.

Alan presented at PwC's DiamondExchange program - The new science of management in a rapidly
changing world, in Arizona.

Alan spoke to Professor Nancy Hechinger's New York University, Interactive Telecommunications
Program (ITP) Communications class.

Throughout the year Alan has had continual contact with SAP worldwide and SAP Labs to share,
disseminate and see how technology ideas and this work might be transferred into their workplace as a
test for further use and outreach.

27
VPRI Technical Report TR-2011-004

References
[Croquet] — David Smith, et al, “Croquet, A Collaboration Systems Architecture, Proceedings IEEE C5
Conference, 2003, Kyoto, Japan.

[Locus] - Gerry Popek, et al, “The LOCUS distributed systems architecture”, MIT Press, 1986.

[Maru] — Ian Piumarta, "Open, extensible composition models". Free Composition (FREECO’11), July 26,
2011, Lancaster, UK, http://piumarta.com/freecoll/freecoll-piumarta-oecm.pdf

[NETOS] - David Patrick Reed, “Naming and Synchronization in a Distributed Computer System, MIT
Phd Thesis, 1978.

[Nothing] — STEPS 2010 4th Year Progress Report (see below).
[STEPS Reports]
[NSF Proposal For STEPS] - STEPS Proposal to NSF - 2006
[2007 1st Year Progress Report] - STEPS 2007 Progress Report
[2008 2nd Year Progress Report] - STEPS 2008 Progress Report
[2009 3rd Year Progress Report] - STEPS 2009 Progress Report
[2010 4th Year Progress Report] - STEPS 2010 Progress Report

[Worlds] Alessandro Warth, Yoshiki Ohshima, Ted Kaehler, and Alan Kay, Worlds: Controlling the Scope of
Side Effects, ECOOP 2011, Lancaster England (and at http://www.vpri.org/pdf/tr2011001_final_worlds.pdf)

28
VPRI Technical Report TR-2011-004

Appendix I - The Active Essay That Explains and Demonstrates How To Make Text Format

How To Make A Text Field From Ants’

Ted Kaehler, Yoshiki Ohshima
Viewpoints Research Institute, Glendale, CA

Figure 1: Ants swarming around food

Introduction

Ants are a “distributed hive animal” whose “cells”
communicate by a variety of means including
laying down trails of chemicals which can help ants
get to discovered food sources.

We want to investigate whether the “particles and
fields” style of distributing messages as intrinsic
parts of environments can work well for some
programming problems.

For example, could we program a text layout and
editing system just using a “field of messages” that
individual text characters can sense and respond to?
Laying out a “paragraph” of “ants” seems like a
good place to start because it will have to work
continuously while the editor is being used.

Building a Text Field from “Ants”

The goal is to create a text field and arrange its
letters in an area of the screen. The letters have an
order from first to last.

The main problem is to do "word wrap" so that
each word is entirely on one line. We don't want
half the word at the end of one line and the other
half on the next line.

*“This project is funded by NSF and private donors

VPRI Technical Report TR-2011-004

What if the text is too long and goes over the mtrgin?

ing diffusi

Figure 2: Si M [j D

In the most general case, each letter is made from
any costume that has shape, color or fill, and can be
bounded by a rectangle.

Any costume that has those properties can be
placed in text, even if it is not really a letter. A letter
object is rendered into the composition area on the
screen using the system's normal costume rendering
programs.

With such a general notion of a letter, we are freed
from dealing with the details of families of fonts,
emphasis (bold, italic), construction of a letter of the
desired size, or text color. When a glyph arrives at
the layout stage, it already has the proper shape,
style, size and color.

Letters In A Box With No Rules

To see the default situation with no layout rules,
press the blue button "layout”. Since there are no
rules, all of the letters pile up at the upper left of the
field. A mouse click or drag on a letter does
nothing,.

29

Text Field Specification

Rules

The behavior of the letters is defined by a set of
rules. Each rule is in a rule editor window. At the
top is the name of the rule, followed by the rule itself.
The rule has a list of clauses. Each clause has a guard
after the When. If the guard is true, then execute the
Do part.

"return” means evaluate the expression and hand it
back to the place where the rule was called. We exit
the rule at the return and do not perform the later
clauses.

Extremely Simple Layout Methods

Random Layout

As a simple first experiment, we will put each letter
in a random place in the text field. Set the x,y
position of each letter to a random value within the
field's width and height.

Press Accept in the rules for layout and place.

Press the layout button below. What happens when
you press it a second time? Press reset to put all
letters at the upper left.

All in One Line

Now let's redefine place to arrange all letters in one
long line. Position each letter just to the right of its
predecessor.

The one line example inherits the rules of the random
layout and overrides the place rule.

The line is clipped by the edge of the field.

(place

(Accept) |

When | amNil
Do return me
When my index = 1
Do my position (whole shape leftAtY 0)+4 ,
4.
return rule tell my successor to 'place’.
When Always
Do pred := my predecessor.
my pivotPosition
pred left + pred pivotOffset x +
pred width ,
pred pivotPosition y.
rule tell my successor to 'place'.

(lay outtext)

layout
When whole contents isEmpty not
Do rule tell whole contents first
to 'place'.
rule processActions.

Accep

The main problem is to do "word wi

Do my positionBecomes
whole width atRandom,
whole height atRandom.
rule tell my successor to 'place’.

(place Accept) |

When | amNil (—)
Do return me

When Always

(lay out text) (“reset)

: Eﬁr rC'etd%!t)rl e:ﬂ::eéafh

82,048 .

VPRI Technical Report TR-2011-004

30

Text Field Specification

How to Break the Line of Text

When the text extends ovei
sl

To layout the text in the field, place the next letter
just to the right of the previous one. The red arrow
points to the letter that was just placed, in this case an
"r'

That letter extends beyond the right margin, so we

need to move its entire word to the next line.

When the text extends gvei
ul

Walk back with the blue arrow until we reach the
first letter of the word.

When the text extends

0
L)

Move that letter to the next line. Resume placing
letters to the right of the "o", as indicated by the red
arrow. Notice that all letters in the word "over" are

placed more than once during the layout.

\('Vhenawordisveryverylong.iin

If the walk back (blue arrow) gets all the way to
the left margin, a single word covers the entire line.

Wrapping the Text to a New Line

When a line of text is longer than the width of the
text field, we want to wrap it to the next line. The goal
of text wrapping is to determine where to break the
text to start a new line.

Each letter follows its prececessor on the current
horizontal line. When a letter hangs over the right
margin, its entire word needs to be moved to the next
line.

A carriage return causes the next letter to start a
new line.

A single word can be wider than entire line.
Break it where it touches the right margin. We also
need to handle the cases when a letter has no
prececessor (it is the first), and has no successor (it is
the last).

We start with a general layout rule. It moves the
first letter to the upper left. Then, it the tells the next
letter to place itself in the field. (Ignore the part about
maxHeight and missingHeight for the moment.)

its successor to place.

When each letter is finished being placed, it must tell
layout

[Accepg
When whole contents isEmpty not

Do maxHeight := whole first ascent.
maxDescent := whole first descent.
missingHeight := 0.
whole first pivotBecomes

((whole shape leftAtY 0) ,

maxHeight) + inset.
rule tell whole first successor to 'place’.
When Always

Do rule tellLater rule to 'showSelection’.
rule processActions.

Which letter should be moved to the next line? The
original clipped letter (red arrow) is the proper letter
to move. A single word that covers the entire line is a
special case, and we must test for it.

VPRI Technical Report TR-2011-004

Whenawordisveryverylong}must

31

Text Field Specification

Place each letter just to the right of the previous
letter on the current line. Then, look for special cases.

If the letter follows a carriage return, move it to
the next line. (This is done inside placelfAfterReturn).

The letter has the goal of not being clipped by the
right margin. When a letter is not white space and
finds that it is being clipped, run the
backToWordStart rule. It looks backwards to find the
start of the current word, and moves that letter to the

(place Accept

When | amNil (—)
Do return me.

When Always

Do pred := my predecessor.
my pivotPosition pred right +
pred pivotOffset x ,
pred pivotPosition y.

When rule placelfAfterReturn me

Do return rule tell my successor to 'place’.
When rule isClipped me

Do rule tell me to 'backToWordStart'.
When (rule isClipped me) not

Do rule tell my successor to 'place’.

\ J

Noticing a Carriage Return

The rule placelfAfterReturn actually ignores the
return character itself. It only takes action when the
previous letter is a carriage return. If so, it moves the
current letter to the beginning of the next line.

placelfAfterReturn always returns true or false.
This allows it to be used in a guard clause. You can see
this in the place rule. When placelfAfterReturn has
moved a letter, it returns true, which signals to go on

(placelfAfterReturn (Accept)
When my predecessor shape notNil a
[my predecessor shape isNewline]
Do "start of the next line"
my pivotPosition 0,
(my predecessor pivotPosition y +
maxHeight + maxDescent + 2).
my pivotPosition
((whole shape leftAtY
my pivotPosition y) + inset x) ,
my pivotPosition y.
maxDescent := my descent.
missingHeight := 0.
return true.
When Always

(isClipped

to the next letter. For all other letters, it returns false,
which signals the place rule to go further and test
whether the current letter is over the right margin.

maxHeight and missingHeight are used to move
the line down when a tall letter is in the middle of the
line. We will hook this up later in the essay.

Noticing the right margin
isClipped is
specifying word wrap. It returns true if current letter

the most important rule for
overlaps the right margin. It does this by comparing
The

margin can be curved, so we ask the text field box for

the letter's right x-value with the margin's x.

the margin's actual x value at this y. Containers can
have irregular shapes, and line lengths can be
different.

White space such as a space or a tab are allowed
to extend beyond the margin. Return false for white
space letters.

(Accepg 1

When my shape isWhiteSpace
Do return false.

When Always
Do return my right + inset x >
(whole shape rightAtY
my pivotPosition y)

Do return false.

VPRI Technical Report TR-2011-004

32

Text Field Specification
Finding the Start of a Word

We know that the current letter hangs over the right
margin. We need to move the entire word to the start
of the next line. backToWordStart first calls
startOfWord, which finds the first letter of the current
word.

If that letter is already at the start of a line, we
should not move it. The line is wider than the field
and has no white space in it. The original clipped
character should be forced to start a new line.

Otherwise, use the start of the word as the letter to
be moved.

Once we have the proper letter in letterToMove, put

Is a Letter at the Start of a Line?

Finally, we need a little test to tell if the current
letter is at the start of a line of text. ‘me’ is the index of
a letter. Return true if the letter is at the left margin.

This only works on letters that have been placed.
isStartOfLine

Accepg
When Always

Do return (whole at me) pivotPosition x -
inset x <=7 "left margin"
(whole shape |eftAtY
(whole at me) pivotPosition y)

it at the start of the next line.
(Accept]

(backToWordStart
When Always
Do letterToMove := self startOfWord me.
When self isStartOfLine letterToMove index
Do "Word takes entire line, break at the
clipped character"
letterToMove := me.
When Always
Do
maxHeight := letterToMove ascent.
letterToMove pivotYincreaseBy
maxHeight + maxDescent + 2.
letterToMove pivotPosition
((whole shape leftAtY
letterToMove pivotPosition y) +
inset x) ,
letterToMove pivotPosition y.
missingHeight := 0.
rule tell letterToMove successor to ‘place’.

startOfWord travels back along the word to find the
first letter. We are looking for a letter that is not white
space. If we happen come to the first letter of the text,
return it instead.

startOfWord considers just one letter. If that letter is
not the start of a word, it calls itself again to consider

(Accept]

the preceeding letter.

(startOfWord
When my predecessor isNil
Do return me.

When my predecessor shape isWhiteSpace
Do return me.

When Always

Do return rule startOfWord my predecessor.
7

\

VPRI Technical Report TR-2011-004

\ 7

(lay out text)

The main problem is to do "word

wrap" so that each word is entirely
on one line. We don't want half
the word at the end of one line
?nd the other half on the next

ine.

33

Appendix II - The Maru code to make a Smalltalk-like language, write an FFT in it, and test it

1. Maru definitions for syntax and semantics of a Smalltalk-like language

The following Maru program implements a Smalltalk-like language. The semantics and runtime support are defined first,
followed the syntax (which in this example is applied immediately to the rest of the input).

The Smalltalk section of the input defines a small class hierarchy and several kernel methods and primitives (the latter
written as ASTs in Maru’s s-expression language, embedded in the Smalltalk code between curly braces “{ ... }’). This
implementation of Smalltalk is 333 lines of code (with blank lines and comments removed). The ASTs generated by the
parser are interpreted in this example, but could as easily be passed to Maru’s compiler.

The final part of the Smalltalk section defines methods to perform a fast Fourier transform on arrays of numbers and to
plot a graph of the contents of an array. These methods are exercised with a 64-sample time-domain signal containing
two sine waves of different frequency and amplitude that are converted to the frequency domain and then plotted.

;7 Some utility functions for dealing with class and selector names

(define-function type-name (Xx)
(concat-symbol '< (concat-symbol x '>)))

(define-function concat-symbols args
(let ((ans (car args)))
(while (pair? (set args (cdr args)))
(set ans (concat-symbol ans (car args))))
ans))

;3 A Maru structure for representing Smalltalk block closures
(define-structure <block> (arity expr))

(define-function new-block (arity expr)
(let ((self (new <block>)))
(set (<block>-arity self) arity)
(set (<block>-expr self) expr)
self))

(define-method do-print <block> () (print "[:" self.arity "]"))

(define-form block-arity (b n)
“(or (= (<block>-arity ,b) ,n)
(error "this block expects ",n" argument(s)")))

;7 Mechanisms for managing the class hierarchy and for defining methods

(define %$smalltalk-classes (array))
(define %$smalltalk-topclasses)
(define %$smalltalk-subclasses (array))

(define-function make-message-accessors (name fields i)
(and (pair? fields)
(cons "~ (,(car fields) () ((name) (list 'oop-at 'self ,i)))
(make-message-accessors name (cdr fields) (+ i 1)))))
(define-form with-message-accessors (type . body)
" (with-forms , (make-message-accessors type (array-at %structure-fields (eval type)) 0)
(let () ,@body)))

(define %$smalltalk-methods)

(define-form define-message (src type selector args . body)
(set type (type-name type))
(set selector (concat-symbol '# selector))
(or (defined? selector) (eval (list 'define-selector selector)))
(or (assq selector %smalltalk-methods) (push %smalltalk-methods (cons selector (eval selector))))
T (set (<expr>-name (<selector>-add-method ,selector ,type
(lambda , (cons 'self args)
(with-message-accessors ,type ,@body)))) ,src))

(define-form send (selector receiver . args)
“(,(concat-symbol '# selector) ,receiver ,@args))

34
VPRI Technical Report TR-2011-004

(define-form define-class (name basis fields)
(let ((base (eval basis)))
(set fields (concat-list (array-at %structure-fields base) fields))
(sanity-check-structure-fields name fields)
(let ((type (%allocate-type name))
(size (list-length fields)))
(set-array-at %$structure-sizes type size)
(set-array-at %$structure-fields type fields)
(set-array-at $%$structure-bases type base)
(let ((derived (or (array-at %structure-derivatives base)
(set-array-at %structure-derivatives base (array)))))
(array-append derived type))
“(let ()
(define ,name ,type)
,@(%make-accessors name fields)
(type))))

(define-function define-topclass (name fields) ;
(println "topclass "name" "fields)
(let ((type (type-name name)))
(eval "~ (define-structure ,type ,fields))
(eval "~ (define ,name (new ,type)))
(eval "~ (push %smalltalk-topclasses ,name))
(eval " (set-array-at %smalltalk-subclasses ,type (array)))
(eval " (set-array-at %smalltalk-classes ,type ,name))))

the root of a hierarchy

~e

(define-function define-subclass (name base fields) ;3 a subclass in a hierarchy
(println "subclass "name" "base" "fields)
(let ((type (type-name name))
(super (type-name base)))
(eval "~ (define-class ,type ,super ,fields))
(eval "~ (define ,name (new ,type)))
(eval "~ (push (array-at %smalltalk-subclasses ,super) ,name))
(eval " (set-array-at %smalltalk-classes ,type ,name))))

(define-function make-inits (args index)
(and (pair? args)
(cons " (set-oop-at self ,index ,(car args))
(make-inits (cdr args) (+ index 1)))))

(define-function define-sysclass (field name base) ;7 a subclass based on a Maru structure
(println "subclass "name" "base" ("field")")
(let ((type (type-name name))
(super (type-name base)))
(eval " (define ,type ,field))
(eval " (set-array-at %structure-bases ,field ,super))
(eval " (set-array-at %type-names ,field ', type))
(eval "~ (define ,name (new ,type)))
(eval " (push (array-at %smalltalk-subclasses ,super) ,name))
(eval " (set-array-at %smalltalk-classes ,type ,name))))

;7 Define the syntax of Smalltalk programs

{
expected = .:what -> (error what " expected near: " (parser-stream-context self.source)) ;
pos = -> (<parser-stream>-position self.source) ;
src = .:s =-> (group->string (group-from-to s (<parser-stream>-position self.source))) ;
#ommm e the syntax of embedded s-expressions (for primitives)
higit = [0-9A-Fa-f] ;
char = "\\" ("t" -> 9
| "n" -> 10
| "r" -> 13
| "x" (higit higit) @s$#16
| "u" (higit higit higit higit) @$#16
| .
)
| .
sstring = "\"" (t"\"" char)* $:s "\"" -> s ;
scomment = ";" (leol .)* ;
sspace = (blank | eol | scomment)* ;
symchar = [-!1#$%&*+./:<=>QA-2"_a-z|~] ;
symrest = symchar | [0-9] ;
ssymbol = (symchar symrest*) @$$;

VPRI Technical Report TR-2011-004

sexpr

sexpression

blank
eol
comment

digit
letter
binchar

uinteger
integer

ufloat
float

number
string
symbol

idpart
identifier

unypart
unysel

binpart
binsel

keypart
keysel

blockargs

block

primary

unysend
binsend

keysend

= keypart:x _ -> x

ssymbol

number

sstring

",

"\""(I"\"" char)* $:e "\"" -> e

"(" (sspace sexpr)*:e sspace ")" -> e

"'" sexpr:e -> (list 'quote e)

"*" sexpr:e -> (list 'quasiquote e)
",@" sexpr:e -> (list 'unquote-splicing e)
"," sexpr:e -> (list 'unquote e)
"["_ expression:e "]" -> e

"5 ([\n\r] .)*

Sexpr:s _ -> s ;

the syntax of Smalltalk programs

[\t 13

|l\n|l|l\r|l* | |l\r|l|l\n|l* ;
T\ (g 1T\ Ly R\
(blank | eol | comment)* ;

[0123456789] ;
[ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopgrstuvwxyz] ;
[-1%8&*+, /<=>2@\\""|~] ;

digit+ $#:x _ -> x ;
"-"uinteger:x -> (- x)
uinteger
(digit+ "."digit+ ("e"digit+)?)@S$:s _ -> (string->double s) ;
"-"ufloat:x => (= Xx)
ufloat

float | integer ;

nan (||||||_>?l | [char)* $:X nan > x

"#"(idpart | binchar | ":")+ @ $S:x _ -> /X

(letter (letter | digit)*) @ $$;
idpart:x !":" -> x

(letter (letter | digit)*) @ $$;
unypart:x !":" -> x

binchar+ @ $$;
binpart:x _ -> x

(unypart":") @ $$;

(":"identifier)+:a "\|"_ -> a

["_ blockargs:a statements:s ("."_)* "]"_
-> " (new-block ,(list-length a) (lambda ,a ,@s)) ;

number | string | identifier | block | symbol

"("_ expression:e ")" -> e
_ P _

"$" e > e

"{"_ sexpression:e "}" -> e

primary:r (unysel:s -> “(send ,s ,r):r)* -> r ;

unysend:r (binsel:s unysend:a -> ~(send ,s ,r ,a):r)* -> r

binsend:r ((keysel: s binsend:a -> ~(,s ,a))+:k
-> " (send , (apply concat-symbols (map car k)) ,r ,@(map cadr
-> r

|
) i

VPRI Technical Report TR-2011-004

k))

36

assignment = identifier:i ":="_ expression:e
expression = assignment | keysend ;
statements = "|"_ identifier*:i "|"_ statements:s

| expression?:e (("."_)* expression)*:f

methodbody = "["_ statements:s ("."_)* "]"_
"{" sexpression¥*:s "}"

typename = identifier
"<" identifier:i ">"_ -> (concat-symbols
i
pattern unysel:s

| binsel:s identifier:i

(keysel:s identifier:i -> (list s 1i))+:k

'>)

-> (cons (apply concat-symbols

definition = identifier:i ":=
(expression:e "."

| { expected "initialiser expression" }

o)

identifier:i ":"
("("_ identifier*:f ")"

| identifier:b "("_ identifier*:f "y

| identifier:b "("_ typename:t
| { expected "class description" }

)

| pos:s typename:t pattern:p methodbody:b {src s}:s

->

->
->
->

-> \(set Ii e) ;

-> \((let ri I@S))
-> \(I@e r@f) 7

-> s
-> s

-> (list s)
-> (list s i)

(map car k)) (map cadr k))

(eval "~ (define ,i ,e))

(define-topclass i f)
(define-subclass ib f)
(define-sysclass t i b)

-> (eval "~ (define-message ,s ,t ,(car p) ,(cdr p) ,@b))

| expression:e "." -> (eval e)

program

_ definition* (!. | {expected "definition or expression"}) ;

ending a grammar with an expression matches the rest of the input against that expression

program

Object : ()
UndefinedObject : Object (<undefined>)
BlockClosure : Object (<block>)
CompiledMethod : Object (<expr>)
Symbol : Object (<symbol>)
MessageSelector : Object (<selector>)
Magnitude : Object ()
Number : Magnitude ()
Float : Number (<double>)
Integer : Number ()
SmallInteger : Integer (<long>)
Collection : Object ()
SequenceableCollection : Collection ()
IndexableCollection : SequenceableCollection ()
ArrayedCollection : IndexableCollection ()
String : ArrayedCollection (<string>)
Array : ArrayedCollection (<array>)

Kernel methods for logic and evaluation of blocks
Smalltalk : Object ()
Smalltalk error: message { (error message) }

Object yourself
UndefinedObject yourself

[self]
[{Or 1

nil := UndefinedObject yourself.

false := nil.
true := #true.

VPRI Technical Report TR-2011-004

The rest of the file is read as a Smalltalk program (see last line of grammar).

Enough of a class hierarchy to support BlockClosure, SmallInteger, Float, Array and String.

37

Object new { (new (type-of self)) }

Object print { (print self) }
Smalltalk newline ‘\n' print]
Object println self print. Smalltalk newline. self]

—_——

Object = other { (= self other) }
Object ~= other { (not (= self other)) }
Object not [false]
UndefinedObject not [true]

Object subclassResponsibility [Smalltalk error: 'a subclass should have overridden this message']

BlockClosure value { (block-arity self 0) ((<block>-expr self)) }

BlockClosure value: a { (block-arity self 1) ((<block>-expr self) a) }
BlockClosure value: a value: b { (block-arity self 2) ((<block>-expr self) a b) }
BlockClosure value: a value: b value: c { (block-arity self 3) ((<block>-expr self) a b c) }
BlockClosure valueWithArguments: a { (block-arity self (array-length a))

(apply (<block>-expr self) (array->list a)) }

Object or: aBlock [self]

UndefinedObject or: aBlock [aBlock value]

Object and: aBlock [aBlock value]

UndefinedObject and: aBlock [self]

BlockClosure whileTrue: b { (while [self value] [b value]) }
Object ifTrue: aBlock [aBlock value]

UndefinedObject ifTrue: aBlock [self]

Object ifFalse: aBlock [self]

UndefinedObject ifFalse: aBlock [aBlock value]

Object ifTrue: aBlock ifFalse: bBlock [aBlock value]

UndefinedObject ifTrue: aBlock ifFalse: bBlock [bBlock value]

Object ifFalse: aBlock ifTrue: bBlock [bBlock value]
UndefinedObject ifFalse: aBlock ifTrue: bBlock [aBlock value]

Kernel methods for numbers

Magnitude < other self subclassResponsibility]

Magnitude = other self subclassResponsibility]
Magnitude <= other (other < self) not]
Magnitude ~= other (self = other) not]

Magnitude > other
Magnitude >= other

(other < self)]
(self < other) not]

——————

SmallInteger + aNumber { (+ self aNumber) }
SmallInteger - aNumber { (- self aNumber) }
SmallInteger * aNumber { (* self aNumber) }
SmallInteger // aNumber { (/ self aNumber) }
SmallInteger \\ aNumber { (% self aNumber) }
SmallInteger << aNumber { (<< self aNumber) }
SmallInteger >> aNumber { (>> self aNumber) }
SmallInteger bitAnd: aNumber { (& self aNumber) }
SmallInteger bitOr: aNumber { (| self aNumber) }
SmallInteger < aNumber { (< self aNumber) }
SmallInteger = aNumber { (= self aNumber) }
SmallInteger asFloat { (long->double self) }
Integer negated [0 - self]

Float asFloat [self]

Number pi [3.14159265358979323846264338327950288419716939937510820974944592]
Number squared [self * self]

Number sin [self asFloat sin]

VPRI Technical Report TR-2011-004

Number cos
Number log

Float
Float
Float

Float
Float
Float
Float
Float

Float
Float

Float

Float
Float

Number between:

Number timesRepeat: aBlock

[

s
c
1

+

P |

A

n

t
r

in
os
og

aNumber
aNumber
aNumber
aNumber
aNumber

aNumber
aNumber

egated

runcated
ounded

[self > 0]

]

Number
Number
Number
Number

whileTrue:

x and: y

[aBlock value.

self

to: a do: b
by: d to:
downTo: a do:
by: d downTo:

Kernel methods for

String size

String new: n
String at: n

String at: n put: c

Collection append: anObject

IndexableCollection atAllPut:

[

a do: b

b
a do:

collections

:= self - 1]

b

N e

o~

—_———

self
self

(sin
(cos
(log

(+
(_
(*
(/
(%

(<

(:

self
self
self
self
self

self
self

asFloat cos
asFloat log

self) }
self) }
self) }

aNumber)
aNumber)
aNumber)
aNumber)
aNumber)

aNumber)
aNumber)

0.0 - self]

(double->long self) }
(self + 0.5) truncated]

x <= self and:

e e b e

e e b e

self.
self.
self.
self.

Rl

-~

[i
[i
[i
[i

{ (string-length self) }
{ (string n) }
{ (string-at self n) }

{ (set-string-at self n c) }

= aj]

aj
aj

= a]

[self <= y]]

whileTrue:
whileTrue:
whileTrue:
whileTrue:

[self subclassResponsibility]

element

0 to: self size - 1 do: [:i | self at: i put:

]

IndexableCollection new:

[

self

self

]

:= self new:
self atAllPut:

n.

element.

IndexableCollection from:

[

n withAll:

start to:

stop do:

element

aBlock

element]

start to: stop do: [:i | aBlock value: (self at: i)].

1

IndexableCollection do:

[

self from:

1

IndexableCollection do:

[

0 to:

self size > 0

]

IndexableCollection select:

[

ifTrue:

self size - 1 do:

[aBlock value:

aBlock

aBlock

(self at:
self from: 1 to: self size - 1 do: [:elt | bBlock value.

0

).

VPRI Technical Report TR-2011-004

aBlock

aBlock separatedBy: bBlock

[b
[b
[b
[b

value:
value:
value:
value:

i.

i.
i.

aBlock value:

P

elt]].

T

+

1]
d]
1]
d]

[—

| answer |

answer := self new: 0.

self do: [:e | (aBlock value: e) ifTrue: [answer append: e]].
answer

]

IndexableCollection collect: aBlock

[

| answer |

answer := self new: self size.

0 to: self size - 1 do: [:i | answer at: i put: (aBlock value: (self at: i))].
answer

]

IndexableCollection with: other collect: aBlock

[

| answer |
answer := self new: self size.
0 to: self size - 1 do: [:i |
answer at: i put: (aBlock value: (self at: i) value: (other at: i))].
answer
1
String toUpperCase [self collect: [:c | ¢ toUpperCase]]
String toLowerCase [self collect: [:c | ¢ toLowerCase]]

(array n) }

(array-length self) }
(array-at self n) }
(set-array-at self n e) }

Array new: n
Array size

Array at: n

Array at: n put: e

A A

Array print
[

'#(' print.
self do: [:elt | elt print] separatedBy: [' print].
')' print.
1
Array append: e [self at: self size put: e]
ArrayedCollection copyFrom: start to: stop
[
| end new newSize |
end := (stop < 0) ifTrue: [self size + stop] ifFalse: [stop].
newSize := end - start + 1.
new := self new: newSize.
start to: end do: [:i | new at: i - start put: (self at: i)].
new
1
Symbol asString { (symbol->string self) }
String asSymbol { (string->symbol self) }

" A non-trivial demonstration program that creates an Array of floating-point samples of a signal
containing mixed sine waves, runs a Fourier transform on the signal to extract the sine and cosine
components at discrete frequencies, then prints a graph of the signal power at each frequency.

Array fftForwardReal
[

| n nml nd2 imag pi m j |

n := self size.
(n bitAnd: n - 1) = 0 ifFalse: [Smalltalk error: 'FFT size is not a power of 2'].
imag := Array new: n withAll: 0.0.
nml t=n - 1.
nd2 =n // 2.
j := nd2.
" reorder input samples for an in-place FFT "
1 to: nml - 1 do: [:i
| x|
i < j ifTrue: [
| tr "ti" | "the imaginary parts are all zero: ignore them"
tr := self at: j. "ti := imag at: j."
self at: j put: (self at: i). "imag at: j put: (imag at: i)."
self at: i put: tr. "imag at: i put: ti."
1.
k := nd2.

VPRI Technical Report TR-2011-004

[k <= j] whileTrue: [
j =3 - k.
k :=k // 2.

].

j =3 + k.

recombine N l-point spectra into a single N-point spectrum

pi := Float pi.
m := (n asFloat log / 2.0 log) rounded.
1 to: mdo: [:1 | "for each power-of-two recombination stage"
| le le2 ur ui sr si |
le =1 << 1.
le2 := le // 2.
ur := 1.0.
ui := 0.0.
sr := (pi / le2 asFloat) cos.
si := (pi / le2 asFloat) sin negated.
1 to: le2 do: [:3 | "for each sub-DFT in the stage"
| dml tr |
jml := j - 1.
jml by: le to: nml do: [:i | "for each recombined pair"
| ip tr ti |
ip := i + le2.
tr := ((self at: ip) * ur) - ((imag at: ip) * ui).
ti := ((self at: ip) * ui) + ((imag at: ip) * ur).
self at: ip put: (self at: i) - tr.
imag at: ip put: (imag at: i) - ti.
self at: i put: (self at: i) + tr.
imag at: i put: (imag at: i) + ti.
].
tr := ur.
ur := (tr * sr) - (ui * si).
ui := (tr * si) + (ui * sr).

1.
1.

receiver contains the cosine correlations; answer the sine correlations
imag

]

Array fftForwardRealPowerNormalised: n
[

| imag |

imag := self fftForwardReal.

0 to: self size - 1 do: [:k |
ri|

r := self at: k.
i := imag at: k.
self at: k put: n * (r squared + i squared). "linear power = magnitude squared"

1

Array fftForwardRealPower

[

self fftForwardRealPowerNormalised: (2.0 / self size asFloat) squared

]

" Plot the contents of the receiver between start and stop, with vertical scale between lo and hi.
For each value run aBlock with three arguments: the value, and min and max limits of the current
vertical bin in the plot. A point is plotted in each bin for which aBlock answers true.

Array from: start to: stop graphFrom: lo to: hi by: aBlock labeled: label

[

| dy dyd2 |
lo := lo asFloat.
hi := hi asFloat.
dy := hi - lo / 16.0.

dyd2 :=dy / 2.0.
hi by: dy downTo: lo do: [:y |
| z ¢
' ' print. y < 0 ifFalse: [' ' print]. vy print. ' |' print.
z (= 0.0 between: y - dyd2 and: y + dyd2.
c := z ifTrue: ['-'] ifFalse: [' '].

self from: start to: stop do: [:Vv

((aBlock value: v value: y - dyd2 value: y + dyd2) ifTrue: ['*'] ifFalse: [c]) print].
z ifTrue: [' ' print. stop print. 1label print].
"' println.

VPRI Technical Report TR-2011-004

1

Array from: start to: stop graphFrom: lo to: hi labeled: label
[
self from: start to: stop graphFrom: lo to: hi
by: [:x :1 :h X between: 1 and: h] labeled: label

]

Array graphFrom: lo to: hi labeled: label
[

self from: 0 to: self size - 1 graphFrom: lo to: hi labeled: label
]

Array testFFT
[
| twopi isize fsize |
isize := 64.
twopi := 2.0 * Float pi.
self := self new: isize.
fsize := isize asFloat.
0 to: isize - 1 do: [:i |
self at: i put:
((twopi * 2.
+ ((twopi * 6.

0 * i asFloat / fsize) cos * 1.00)
0 * i asFloat / fsize) sin * 0.75)
].
‘\ninput signal:\n' println.
self graphFrom: -2 to: 2 labeled: ''.
self fftForwardRealPower.
'\ncorrelated power spectrum:\n' println.
self from: 0 to: isize // 2 graphFrom: 0 to: 1.2
by: [:x :1 :h | x > 1] labeled: ' \u0192s/N Hz'.

]

Array testFFT.

'\nThat''s all, folks' println.

2. Output from running the above Maru program

input signal:

.000000
.750000
.500000 * k% *kk

.250000 * *

.000000 |* *

.750000 * ok * *kk

.500000 * * * * * *
.250000 * x * ok
.000000 * * * B T T —— Hmmmme e [R, *—— 63
-0.250000 * % * *

-0.500000 * * * * * *

-0.750000 *kok * *ok ok *

-1.000000 * *

-1.250000 * *

-1.500000 * k% * k%

-1.750000
-2.000000

OCO0OO0OOKKFKEKEN

correlated power spectrum:

.200000
.125000
.050000
.975000
.900000
.825000
.750000
.675000
.600000
.525000
.450000
.375000
.300000
.225000
.150000
.075000 * *

000000 |***kkkkkkkkkkkkkkkkkkkkkkkkkkxxx*x 32 fs/N Hz

* % ok ok kK X Ok ok X K X

* % ok ok X *

[~ -N-N-N-N-N-N-N-N-NN-N 0NN

That’s all, folks

VPRI Technical Report TR-2011-004

42

