
APPEARANCE MATTERS

‘Microsoft have consistently underestimated the importance of appear-
ance and so have not been of service to the publishing industry’ said
John Warnock during his Lovelace Lecture. Conrad Taylor reports.

John Warnock gave the British Computer Society’s 2004 Lovelace Lec-
ture, entitled ’The Invention of PostScript and Acrobat — Small Innova-
tions that had a Big Impact’ before an audience of members of BCS, at a
conference centre in West London, on Thursday, 13th May 2004.

He spoke immediately after having been awarded the Lovelace Medal —
named after Lady Ada Lovelace, pioneer programmer and Charles
Babbage’s assistant — by the BCS’s then President, Professor Wendy
Hall of the University of Southampton.

History

In talking about the development of PostScript and the Portable Document Format, John
Warnock was at pains to emphasise the continuity of the ideas about computer imaging that he
has been working on for thirty years, and the way in which each of his projects has fed into the
next one.

Thus, although PostScript was launched as a functioning page description language in 1984–5,
John traced the origins of it back to a simulator project he was hired to complete for Evans and
Sutherland.

Professors David Evans and Ivan Sutherland, pioneers of computer graphics, had been John’s
supervisors while he was doing his PhD at the University of Utah (A Hidden-Surface Algorithm
for Computer Generated Half-Tone Pictures–1969) and brought him in to help complete a
contract to build a training simulator for the New York Harbor Authority.

The idea behind the simulator was to build a replica of the bridge of a supertanker, replacing the
windows with three computer screens. These screens were to show a simulated image of the
entire harbour zone of New York, showing all the surrounding landforms and buildings, jetties,
buoys, etc. Evans and Sutherland had agreed to deliver the project in a three and a half year
time-span, but at the time John was hired, nothing had been done on the project and there was
only one year left. Seemingly, this was an impossible task.

A team of four were set to work to complete the software and database side of this project: John
Warnock, John Gaffney, P. J. Zima and C. Barton. Meanwhile E&S were, in the same timeframe,
to build six racks of specialist hardware to drive the large displays.

This, said John, was the project where he really appreciated the value of ‘late binding’. They
could not wait to develop the rendering software before starting the huge task of building a
detailed database of the terrain, so they opted for a data format that was essentially a huge text
file. John Gaffney masterminded this side of the project, using a large and often unreliable
digitisation plotting table to capture from maps the geographical coordinates of each feature of
the terrain, and adding a third figure to designate the height. All this data was written to a text-
based database file.

Meanwhile, John Warnock was hard at work building the ‘virtual machine’ that would calculate
and render the harbour views from this database. This is where the roots of PostScript can be
detected. The interpreter ran on a DEC PDP-11 computer with only 32K of memory, and had to
be very efficient in the way it managed resources.

- 2 -

Almost miraculously, the project was delivered only one month late.

John Gaffney and John Warnock went on to collaborate on another E&S project, a real-time
space shuttle simulator for NASA to help train astronauts in the use of the shuttle’s manipulator
arm for moving loads in and out of the shuttle cargo bay. For this project, they decided to create a
fully functional programming language with a stack-oriented approach to the management of
resources. This language, which they called The Design System, also points to the future
development of PostScript.

The Xerox years

The next twist in Dr. Warnock’s career came when he was hired to work at the legendary Xerox
Palo Alto Research Centre (PARC). He was put under the management of Charles (’Chuck’)
Geschke, who was soon to become his partner in the founding of Adobe Systems. John worked
together with Martin Newell and Doug Wyatt on the task of developing an imaging language that
Xerox could use to drive its innovative laser printers.

The interim version of their efforts was known as JaM (for John and Martin), and was designed
as a device-independent imaging language, floating above the world of 72 dpi screens and 300
dpi printers then inhabited by Xerox technology, and anticipating the development of
progressively higher imaging resolutions.

JaM can, in fact, be seen as the PostScript language and imaging model but without the outline
font handling mechanism: Xerox fonts were all stored as hand-tuned bitmaps at a series of fixed
sizes and orientations.

This all started to come together in around 1982, implemented in MESA on Xerox Alto and
Dorado computers. However, John and Chuck were not best pleased by the way the project
developed to meet Xerox management’s demands. Their ideas were eventually implemented by
Xerox as the page description language InterPress — a strange and messy mix of declarative and
interpreted language.

The face of PostScript

As is now well known, John Warnock and Chuck Geshke decided to leave Xerox together, and
set up a small company based in Mountain View and named after a local stream, Adobe Creek.
Their initial idea was to compete with the likes of Interleaf and Texet by developing workstation
publishing software, but they were advised by friends that their true expertise lay in their ideas
about how to develop a device-independent document imaging model and they should
concentrate on that.

So JaM came off the shelf, so to speak, and became PostScript, with the additional help of Doug
Brotz, Bill Paxton and Dan Putman. The problem which the team now had to address was how to
handle fonts. Up until that time, everyone had failed to devise a system that would produce raster
fonts for printing from outline data ‘on the fly’. Xerox had failed; even eminent computer
scientist Don Knuth had failed; and so the conventional wisdom was that it was impossible.
Every other system used hand-tuned bitmaps.

The problem, as John proceeded to demonstrate with diagrams, is that a simplistic process of
‘turning on’ pixels that fall inside, or are touched by the font outline, leads to unfortunate aliasing
problems.

Showing a letter ‘m’ for example, John showed how one might end up with two vertical stems, or
‘staffs’ as he called them, at two pixels wide, while the third was rendered three pixels wide.
Diagonal lines might be rendered with odd wiggles in them; rounded lowercase letters might
project above and below those with flat tops and bottoms; and serifs would not be rendered
consistently.

- 3 -

Unlike previous attempts to solve this problem, which had tried to come up with more
sophisticated scan-conversion algorithms, the Adobe team decided to ‘cheat’ by moving the
goalposts — more accurately, the letter boundaries — in such a way that the resulting scan
conversion would be more acceptable. According to John, this was the first time a member of the
team had spoken publicly about how they did this: ‘We kept this as a dark secret for 22 years.’

Each PostScript typeface was assigned sets of ‘blue hints’. The ‘blues’ were critical zones within
the vertical dimension of the face, such as the baseline and the x-height, where it was important
to normalise the placement of pixels to guarantee evenness of letter-height. Then, each letter was
given ‘yellow hints’ for each of its vertical stems, to ensure that these would be rendered
consistently.

The bitmaps for PostScript fonts are generated when they are needed, by the PostScript Raster
Image Processor (RIP) for that printing device. The RIP first retrieves the font’s outline
coordinates and scales them to the required dimensions, then uses the blue and yellow hinting
information to move the boundaries relative to the pixel grid which is appropriate to that
particular printing device’s resolution. Only now does scan conversion take place, and the
alphabetic bit-maps, thus generated, are cached and used as required to build the display for the
page.

John also described some other subtleties in this process, such as the tweaking of 45-degree lines,
and an ‘erosion’ procedure, which stops small letters from being rendered too bold.

The launch of PostScript

Support for the PostScript project came from Steve Jobs, co-founder and CEO of Apple
Computer, who visited the little start-up company and saw what they were doing. Steve decided
that Apple should build PostScript into a laser printer to go with their Macintosh computer
(launched in January 1984), and gave Adobe a million and a half dollars as an advance on
royalties to finance the development of the PostScript RIP for the Apple LaserWriter.

Burrell Smith of Apple and Dan Putman of Adobe started to design the Apple LaserWriter
controller board in 1984. Equipped with a Motorola 68000 processor, like the Apple Macintosh
itself, this board was to be, in effect, Apple’s most powerful computer, with a megabyte and a
half of RAM at a time when RAM was very expensive indeed.

Even more nerve-racking was the building of the ROM chip to contain the printer’s operating
system and PostScript interpreter program code: half a megabyte of masked ROM, more than had
every been attempted anywhere before, to the best of John’s knowledge. There was absolutely no
margin for error.

Nor, at first, did it look as if there was any margin for profit, despite the high price of $7,000,
which provoked such shocked incredulity not only in the market at large but even within the
dissenting ranks at Apple Computer.

The cost of all that RAM meant that the printer was going to be sold at a loss, perhaps only
justified as part of Apple’s larger strategy to promote the Macintosh Office vision of networked
Macs sharing a superior printer. Then in the week before the LaserWriter shipped in early 1985,
the cost of RAM took a tumble and the printer won some profit margin.

Far from being an expensive mistake, the LaserWriter was an immediate hit with graphic artists
and publishing professionals. Combined with innovative publishing software, such as Paul
Brainerd’s PageMaker, it created Desktop Publishing and saved the Macintosh.

The importance of PostScript in publishing was soon to be confirmed when the second licensee
was Linotype, who commissioned Adobe to provide their L100 imagesetter with a PostScript
RIP, soon followed by the highly successful 2540 dpi Linotronic 300 imagesetter.

- 4 -

In 1987, IBM chose PostScript as their print imaging model; Hewlett-Packard followed ‘in a
nanosecond,’ John said. Success also brought competition, with seventy clone competitors to the
PostScript interpreter by 1988.

Competition also came from within Apple Computer, where an influential group pushed for the
development of the TrueType font format; and in 1989 Apple and Microsoft announced that they
would develop a whole alternative imaging model dubbed ‘True Image’. John seemed gleeful as
he pointed out that the True Image project produced only one printer — and it didn’t work.

As for TrueType, that of course is a whole different story — and not one that John went into.

The surprisingly early roots of PDF

John next turned to that other useful little invention, the Portable Document Format. This also has
longer roots than might at first be imagined; John dated the origins of the idea to 1984.

Steve Jobs — ever the showman — wanted to have some sample documents that could be printed
out on stage at the LaserWriter launch event.

Lacking, at that time, a sufficiently sophisticated page make-up program, Adobe created hand-
coded PostScript to print a number of documents, the most visually and politically impressive of
which was to be the IRS tax form. Applying his elegant programming style, John created the
PostScript for this form with efficient subroutines. The trouble was, it took two and a half
minutes for the LaserWriter to process that code and print the page.

Steve Jobs insisted that watching a LaserWriter’s little green light flashing for two and a half
minutes was going to seriously undermine his performance, however wonderful the final printed
result. Couldn’t John get the thing to print faster?

John, therefore, went back into the code, unpacked the clever subroutines and loops, and flattened
them out into a static description of the page; and this, essentially, is what PDF was to become.
The immediate benefit was that the IRS tax form sample now printed in 12.5 seconds.

In 1991, just as the Internet was opening up and the Web was about to burst onto the scene, John
Warnock started to conceive a method for sending fully-formatted, graphically rich documents
across the Internet.

Al Gore had been making popular the metaphor of the internet as the ‘Information
superhighway’, and in one of his early presentations about what was then called the Carousel
project, John said that the so-called superhighway was like a link between walled cities, with no
vehicles in which to make the journey. The Portable Document Format (PDF) was to be an
implementation of the Adobe imaging model designed to make those documents travel safely and
arrive intact.

And so the Adobe team got to work. The first demonstrations of the technology were created by
Alan Wooton and Mike Pell. PostScript veteran Doug Brotz figured out how to write the Distiller
application to convert PostScript files into PDF, and the Englishman Peter Hibbard figured out
the file structure with its object-oriented, nested structure and its end-of-file table of references to
make the whole thing hang together.

Acrobat was announced to the world in general in 1993. It has been enormously successful. There
have been over 600 million downloads of the free Acrobat reader, and there are an estimated 60
million PDF documents on the Web. Acrobat is now Adobe’s largest product, and also the one
that is showing the fastest growth.

There have been changes to both Acrobat and to PDF since it made its debut, but John did not
have the time in this brief lecture to go into that detail. The only thing he did mention was the
effort that had gone in the early developments of Acrobat into the font-substitution mechanism
using a generic sans-serif and serif face in Multiple Master font form. At the time that seemed

- 5 -

significant because by having the fonts substituted rather than embedded, one could trim down
the file-size; in an era of 9600-baud modems, that seemed worth doing. Now, everybody embeds
the fonts anyway.

Q&A

John then took and answered about twenty questions from the audience. Some of these were more
about commercial matters, but there were also some with a technical bent. For example, John was
asked about the typeface Optima, which seemed to have two sets of outline data in it.

‘True’, said John, ’because the gentle curves on the stems of Optima are a nightmare at low
resolutions, so they used one set of outlines for small sizes at low resolutions and another for the
larger sizes.’

John was also asked whether PostScript and PDF files had archival qualities: whether they would
still be readable in a hundred years’ time, for example.

John saw no reason why not, provided that the knowledge was kept alive of how to write an
interpreter for whatever future computing platform would be required to read them. Ed Taft at
Adobe has the responsibility for watching over the programming teams who work on PostScript
and PDF to make sure that the file structures are kept clean and well-structured.

Someone wryly commented that PDF might be platform-independent, software-independent and
resolution-independent, but an A4 document wouldn’t print well on US Letter paper.

‘True’, said John, ’but PDF gives better visual results than any of the alternatives.’

I myself asked John to comment a little on the problem of transparency in the PostScript imaging
model. The inability of PostScript to define objects as being transparent (e.g. to produce a better
irregular outline around hair in a cut-out photo, or a drop shadow) had been as a result of the
design decision not to require PostScript RIP to retain ‘state’ in the interests of efficient memory
management.

In PostScript, as objects in the Display List are rasterised, they are immediately merged with the
virtual page; and the memory, thus released, is recycled for the next task. Processing transparency
in an imaging model requires holding the state of objects potentially a hundred levels or more
apart in the stack.

At high resolutions, the memory requirements are enormous. Processing transparency in the
Adobe imaging model has, therefore, been possible only very recently, as memory costs have
fallen.

Did John have any regrets? Was there anything he might with hindsight have done differently?

‘Well, it’s hard to argue with success,’ said John, perhaps a little too complacently; but he did
add that Adobe should have published the specifications of the PostScript Type One font format
and its encryption techniques earlier, instead of in 1989 in reaction to the Apple-Microsoft threat
from TrueType. That could have forestalled what John considers the unnecessary complication of
TrueType.

Why hasn’t Microsoft taken over PDF or defeated it with its own alternative? ‘Because’, said
John, ‘it seems that Microsoft “just doesn’t get it” — they have consistently underestimated the
importance of appearance and so have not been of service to the publishing industry.’

