S et

-
st e
TR

Attacking Distributed System
The DNS Case Study

Dan Kaminsky, CISSP

Senior Security Consultant

IP Telephony Contact Centers Unified Communication Services
C ght© 2003 Avaya Inc. All rights

i reserved Avaya - Proprietary (Restricted) Solely for authorized persons having a need to know pursuant to Company instructions

Your Friendly Investigator

e Who am |1?

— Senior Security Consultant, Avaya Enterprise Security
Practice

— Author of “Paketto Keiretsu”, a collection of advanced
TCP/IP manipulation tools

— Speaker at Black Hat Briefings
 Black Ops of TCP/IP series
 Gateway Cryptography w/ OpenSSH

— Protocol Geek

Copyright© 2004 Avaya Inc. All rights reserved 2

What We’'re Here To Do Today

* Discuss vulnerabilities in the design of DNS

— Not going to speak about vulnerabilities of specific
Implementations

— Will discuss structural faults — problems that necessarily
had to happen given the semi-anonymous formation of
the network

e Discuss how these vulnerabilities can inform the design
of other systems

Copyright© 2004 Avaya Inc. All rights reserved 3

The Subject Of Our Investigation

« DNS: The Domain Name System
— Created by Paul Mockapetris in 1983

— Fast, easy, accurate way to, given a host’s name, find out it’'s number
(“1P Address”)

 The Internet doesn’t run on names any more than the telephone
network does — everything is numbered for efficiency.

— “Internet’s equivalent of 411"

« Actually more critical — people will keep the same phone number
for years, while some services change their IP addresses
constantly

— Was becoming a management nightmare to pass around lists
of names/numbers

— “Call 411 by default”

* Internet has no secure mechanism for sending a fail/redirect

message (“the number you’ve called has been disconnected, the
new numberis...”)

Copyright© 2004 Avaya Inc. All rights reserved 4

The Nature Of Our Investigation

 The Question: Is it possible for DNS to do anything more interesting than
return numbers from names?

— Simple answer: Of course, it can return mail servers, names from
numbers, SPF records, etc.

— Better answer: Why do you ask?

 Second oldest “uncontested protocol” for what it does
— Telnet’s moved to SSH, Gopher and FTP moved to HTTP
— Only SMTP is in a similar class

* Globally deployed, universally employed
* Routes everywhere, through pretty much any network,
 Was heavily queried during recent MS Blaster worm.

— Ultimate answer: Yes, or this would be a very short talk!

 The strategy: Does DNS have any unexpected similarities — “homologies”
—to other protocols | consider interesting?

Copyright© 2004 Avaya Inc. All rights reserved 5

Homologies Within The Structure of DNS

 DNS Proxies

— Those that do not know will ask those that do

— “Recursive Lookup”

— Lookups are heavy processes; was necessary to centralize the work
« DNS Caches

— If one name server does proxy for another, results are not ephemeral,
rather they’'re cached for a definable amount of time (up to aweek in
most implementations)

« DNS Routes

— Those that don’t know, and don’t want to ask those that do, can
instead reply with a route recommendation of who else to speak to.
Those that receive route recommendations will generally follow them.

— Used to implement the DNS hierarchy
e .cOmroutes to doxpara.com routes to www.doxpara.com

— “lterative Lookup”

Copyright© 2004 Avaya Inc. All rights reserved 6

Mapping the Domain Name System

« Why?
— “Qver 150K servers on 64.* alone!”
— Do we have tools?

— dnstracer (DJB)

« [determine] where a given Domain Name Server (DNS) gets its
information from, and [follow] the chain of DNS servers back to
the servers which know the data.

— dnstracer (mavetju)
67.15.31.131 (67.15.31.131)

I\ nsl.speakeasy.net [81.64.1n-addr.arpa]
(216.254.0.9)

| I\ dsl1081-064-164 _.sfol.dsl .speakeasy.net
[164.64.81.64.1n-addr.arpa] (64.81.64.164)

— Heady claims, but these tools only describe internetwork
relationships, not intranetwork

Copyright© 2004 Avaya Inc. All rights reserved 7

DNS Coalescence

 Of those 150K servers, many are:
— The same server with multiple interfaces

— Servers in a “silent hierarchy”

e Alice maintains her own cache, but if she can’'t answer a
guery, she connects to another upstream server rather than
some Internet host. Its cache is checked, and so on.

 Would be very interesting to extract these relationships

— Dependency checking —which servers trust one another
to provide the correct name?

* Vulnerability scope expansion —which other IP’s, if
penetrated, would cause harm to name services?

— Pretty pictures

Copyright© 2004 Avaya Inc. All rights reserved 8

Enter The Snoop

« DNS Cache Snooping:

— Name servers maintain caches
e Static, for authoritative domains
 Dynamic, for results from recursively acquired data

— By disabling the RD(Recursion Desired) bit, clients can search
only these caches

 Not necessary, but “ecological”

— Possible to make judgements about the environment of a
name server by what names it has stored

 Best paper on the subject: “DNS Cache Snooping” by Luis
Grangeia

— Which mail servers are talking to which, what typos people are going
to, where hard-to-find people who only trust a few domains might be,
etc.

 We can inject content into caches, then look for it elsewhere to
see if our injection spread

Copyright© 2004 Avaya Inc. All rights reserved 9

Mapping DNS[O]:
Simple, Accurate, Dead Slow

1. Query one server recursively with something obscure/unique
(“nonced”)

— dig ©64.81.64.164 1234.sitefinder.com

1234-sitefinder-com- 86400 IN A
64.65.61.123

« 2. Flood every other server nonrecursively, looking for the nonce
— dig +norecurse @4.2.2.1 1234.sitefinder.com

1234-sitefinder-com- IN A

* 3. Recoil in horror as you realize this is O(N*2); linking 90K
servers to eachother this way requires ~8.1B scans that must be
done before cached entries expire

— There must be a better way!

Copyright© 2004 Avaya Inc. All rights reserved 10

On TTL's

 Cache entries aren’t just stored for some amount of
time and silently aged out

— DNS publishes time remaining for cache entries, to make
sure the distributed caches all delete old data at roughly
the same time

 The clock visibly runs for cached entries
e Seconds are quite reasonably standardized ©

— If entries have a fixed, constant starting TTL(*Time To
Live”), then (Starting TTL) — (Measured TTL) = (Time
Since Server Queried This Name)

« 3600 starting - 3580 measured = 20 seconds since query

Copyright© 2004 Avaya Inc. All rights reserved 11

Mapping DNSJ[1]:
Less Simple, Surprisingly Accurate, FAST

1. Acquire large list of servers (demo shortly). Shuffle this list.

2. Request same obscure name from all of them. (~100/sec is
fine). Note the starting TTL of this name. Record the time each

guery was sent.
* 3. Analyze responses.

— Those where TTL(response) == TTL(initial) had no cache to
depend on.

— Those where TTL(response) < TTL(initial) depended on
another cache. Use the difference between the two to figure
out which caches you were scanning at the time.

o Sinitial _ttl = 3600;

e $sendtime = (int $then) - $start;

« $recvtime = (int gettimeofday()) - ($initial_ttl - $packet_ttl) - $start;
— There will be many candidates. So reshuffle and rescan.

« 2or 3should be enough for all but the fastest scanners

Copyright© 2004 Avaya Inc. All rights reserved 12

Optimizing Time

* Integration of latency measurement

— Skew between when packet is sent and when reception is
noted can degrade detected correlations, especially if jitter is
high

— Solution: Measure latency between sending and receiving

« Traditional approaches:
— Send, wait, receive, check how much time elapsed. Slow!

— Send, store the fact that a packet was sent along with the time it was
sent, receive, check difference. Easy in Perl, but inelegant.

 Scanrand Approach
— Query packets go out with a DNS ID, that must be reflected back

— 16 bits of capacity = 65536 potential values = Range for 65 10ms
intervals or 6.5 1ms intervals

— Doesn’t alter ability of data to get cached (like putting timestamp in
name being looked up)

Copyright© 2004 Avaya Inc. All rights reserved 13

Combining Approaches

* Use fast method to show relationships, then slow method to
perfect them

— Slow method quite fast at validating theories

— Slow method also much better for differentiating:

» Master/Slave

— When slave has data cached, master has data cached. But when
master has data cached, slave may not. This is because master has
many slaves.

o |dentity

— Whenever one IP has data cached, the other IP has data cached.
Either they’'re doing some strange aggressive cache sharing
mechanism or they’re the same physical server

 DNS caches being remotely visible has other effects...

— Can be used to (anonymously) publish and acquire data, very
very slowly.

Copyright© 2004 Avaya Inc. All rights reserved 14

Single-Bit Data Transfer[0]: HOWTO

Sending:
— Step 1. Split message into individual bits.

— Step 2: For each byte that will be available for reading, do a recursive
lookup against a “start bit” address.

— Step 3: For each bit thatis 1, do a recursive lookup against a
wildcard-hosted name that identifies that bit.

Receiving:
— Step 1: Do alookup for the first byte’s start bit. If setto 1...

— Step 2: Do non-recursive lookups against names that map against all
eight bits. Those names that return answers are 1, those that don’t
are 0.

— Step 3: Integrate bits into a byte and save. Increment byte counter
and return to step 1.

Deleting:
— Optional: Simply do arecursive lookup to clear the O’s
o Larger scale transmission is, of course, quite possible

Copyright© 2004 Avaya Inc. All rights reserved 15

Tunneling Arbitrary Content in DNS
HOWTO [0]

 Note: This isn’t anything new
— Text adventures over DNS

Calculators over DNS
Bittorrent Seeds over DNS

« Upstream: Encode data in the name being looked up (A,TXT,etc)

Restrictions: Total length <253chars, no more than 63
characters per dots, only 63 allowable characters

Solution: Use Base32(a-z,0-6) to encode 5 bits per character,
~110 bytes total

Example:
zjabdbcctvaojbz55mqwe224ceyeltkbhyaasncpl jgc53pirtsmuzi

hcyrw.uujca7ytd3titfmmglrcsi65r3w3badmixix6nemd6eul fy2ss
62xmFfF3zecv.ttiv]2trx642zI1rgpbwo2f2glnxk7yxyu3pfeiuvgaw
c/mijpgn5sh4j .63034-0.1d-1187 .up.foo.com

Though protocol appears to allow multiple “questions” per packet, no
actual implementation parses or forwards such (AA bit problems)

Copyright© 2004 Avaya Inc. All rights reserved 16

it ““qﬂ{f}QC\/yﬁcsflﬁ\
Tunneling Arbitrary Content in DNS
HOWTO [1]

» Downstream: More flexible

— Standard DNS packets must be <512 bytes at IP layer
 Prevents IP fragmentation from interfering

— Traditional approach: TXT records

* Restrictions: Minimal. Unstructured, high capacity, provides for
subrecords of up to 128 bytes, subrecords are not reordered.
Data probably needs to be ASCIl-compatible.

« Solution: Use Base64(a-z,A-Z,0-9,=,/) to encode 6 bits per
character.

 Example:

— "MCaydY5mzxGm2QCgAGLOb 1 AKAAAAAAAACAAAAAECMyaydY5mzxGm2Q
CqAGLObCwAAAAAAAAAAGACNO10AATAAgGACAAAAAAAAAAAAAACHh3KUMR
6NPEY7KAMAMIFNTaAAAAAAAAAAT pgVWQS IVTromPCY=\010""
""mP5svdFBDWAAAAAAEOVFQJIW I XQGTAWAAAAAAAECXS5TCAAAAAWL2MNQ
AAAACIEWAAAAAAAATAAAAZ\O10BAAAMWQAADEPAQCLA79FLQNPEY7 A
MAMIFNTLwWCAAAAAAAAROtOrugnPEY7mAMAMIFNIBgA=\010"

Copyright© 2004 Avaya Inc. All rights reserved 17

RS A\VAYA
Tunneling Arbitrary Content in DNS
HOWTO [2]

* Naive approach to tunnel suppression: Lets just
censor TXT records

— Data leaving network can be much more problematic
than data entering -- doesn’t address that

— Breaks SPF, which encodes itself in TXT
— Don’t need TXT for arbitrary content

Copyright© 2004 Avaya Inc. All rights reserved 18

Tunneling Arbitrary Content in DNS
HOWTO [2]

e Other downstream approaches

— MX records (mail)

» Restrictions: Addresses are shuffled upon delivery to client, to
compensate for bad API's (gethostbyname)

« Solution (care of Dave Hulton): MX records contain precedence
values, which describe the order in which mail servers should be
used. Can also use to describe order in which packets should be
reassembled.

— A records (foo.com ->1.2.3.4)

» Restrictions: Addresses shuffled, and no precedence value
exists.

o Solution: We can only fit ~16 IP’s into a single response. We can
use 4 of 32 bits in each IP to describe the order in which the
shuffled addresses should be reassembled. Total capacity
becomes ~56 bytes per packet.

Copyright© 2004 Avaya Inc. All rights reserved 19

Increasing Per-Packet Bandwidth For DNS:
EDNSO

e Size limitations didn’t just inconvenience tunnels

— AOL/Yahoo had many, many IP addresses they wanted
users to distribute their load across, and they bumped
up against the 512 byte limit

— DNSSEC wanted to sign records, but not at the expense
of storage capacity

— So capacity had to be increased

 Enter EDNSO, which allows a sender to describe the largest
DNS packet his implementation can support.

» Size allowed to exceed IP fragmentation limits (4096 byte
advertisements common in wild)

Copyright© 2004 Avaya Inc. All rights reserved 20

Effect of EDNSO on TXT Tunnel

Downstream [0O]

-
ﬂ"‘"

L

é.ﬁié.4ﬂnaéé:“h:b64l.demu.maddnﬂ.net t=t

<<rx D1G 9.3.0 <<r» +dn=sec 0.bed]l deno. maddn=s. net txt
global options: printcmd

Got answer
—:»*HEADER< ¢ — opoode: QUERY, =tatus: HOEREROR., id:. 921
flags: gr »d ra; QUERY: 1. ANSWER: 1, AUTHORITY: 1., ADDITIOHAL: 1

OFT PSEUDOSECTION
EDHS verzion: 0, flags: do: udp: 4096
;; QUESTIOH SECTION:
;0.bed]l demo.maddns net . IH THET

;; ANSWER SECTION:

0.b64]l . .demo.maddns net . 3 IH TET "Hi=TAhhhddddd+v9ad=alZ¥u2l-Hr9]tvgesVIOIQZH 10y
W IIulpgMo?azuf HOQEEUBYEEFFEIJx" "n-639=zfczisSa+0dEZhwlrvPPielgtI00cOell PzECxcP4gnl Y E1aH Ut 61~
irVnerBiz=" "rIYSWIFEN3IdArO¥VvyBYewgRaijlnmB?HbE=xpTr172162W0==" "fyvg?lS+37mri+usrHLLT?wf3ig9E]=s
1chyoRGE454b8+TOK - LEINY an-mnZNLe9PrpeswtOsxl1JE" "I3=0TZ0t BEMS-Tef VP He-wTHl==F33elEl c10a01HpLla
wilnfammd95a0F1=0Fi=ZB-H=" "3dijVDWEUo=071lak?WoD4 levidv-3-<orn-7iiaicH R az+Pnvlavited +nd?=zUa+3UW
cozrhan+c" "o 4GrwGdOvEBLPBAE? 1de VInKLEnv9gase+r1 jo0XT=00hTHYL9 - Wigl 7 DDw 1 TEdzaE7mEU=" "1ftggHa?
ouyOrf D2 2WkTkLPdeiHC8+dReogDO e CgFwaTH1 ADa P g2bY TlxUdSHVeT1 Q- -8CdpIxFe " "uSEwlJSmntuerf lzpu?4igbda
binrpjuwJiMa5BhlkH-5S+grH31db=xvlLlhoaszul96drddG+Gg=" "zilH8LbBWOwdGHHErGOK1Vvoz 3nGi Tovf OFuObOqsE:Z<a
baW=Z42C0Z 703Xt FGI1GHwvoct fznt K" "vlagwiWPE8+du T0a10KnESvd08 t=8¥7 a1 wBe Ve YUEQf hISywyv b BcEWiEWIR
hIGOcK-0ORx8=" "vHN1Md38-bep2TIOiEVjfelr9d48t=]l-FCEES=2rESfzXiOnIRDcAZg?SgqnavhepI7pli9tDocedypd” "W
Q7hAPEO0ImGT3tu2bRSt2jifebllerPAtt 3eVor g IHwrGAb0dughbltDeajDo0wt LDo+A=" "a3N0Z8 uz J2EwEIhn=V2HM
=/t 2063]Lepoy+69dxYb00L0fciz? 1t InaOREO0F jPebqu? f dgG+cKO" " 9HglI7g98 3vHphLM=E7?LOPMuTE £ Om9nOnECGE
zabF+7/n0bLgeGlgEYSHeu2aFhzHCPwtEw=" "H+bBEERFHMO=4NETa 9wk DrOodutGeynt 1 3gneWPTE 117252 p+orexGlrhl
g+HoX8H1HATOSwEkTp=z" "1UDG6ulIrp=0i/nlCGareTeTg=f+pd 9t av+] LERHREPwY g2 7Hwr] 90wwne9=bHO Ivmto=s="

;o AUTHORITY SECTION:
maddns . net . 79594 IH HS n= . maddns . net .

¥ N L Ly ™ R, . B

Effect of EDNSO on TXT Tunnel
Downstream [1]

o TXT Capacity increases to ~1024 bytes

— While EDNSO claims to allow IP fragmentation in DNS
gueries, implementations seem to fail if you actually ask
them to use it.

— 1024 byte transfers = 1453 byte DNS packets. This is too
close to the 1500 byte hard limit on Ethernet/IP.

e 768 byte encapsulations tend to be reliable.
— More than 3x faster than 220 byte default

— Efficiency improves from 50% to 66%!!!
e Could be worse...there could be an XML schema involved.

Copyright© 2004 Avaya Inc. All rights reserved 22

Suppressing DNS Tunnels [O]

 Ongoing research ©

* Per-packet algorithms will have trouble differentiating
odd but legitimate traffic. Think flag, not block

— Excessively large requests and responses

— Class D or E IP addresses (224-255.*.*.%)
 Will break certain multicast implementations!

— “High Entropy Traffic”

« DNS names tend to follow English trigraph distributions.
Deviations from these trigraphs could be flagged.

— Interesting things happen with DNS and Unicode. RFC3492
(“Punycode”) creates a 1.1 mapping between ASCII names
and Unicode that isn’'t Base64. (Yes, there are potential
exploits w/ naive Unicode renderers)

Copyright© 2004 Avaya Inc. All rights reserved 23

Suppressing DNS Tunnels [1]

* Best (thus far) approaches involves multi-packet analysis
— Maximum number of queries per minute
— Maximum number of queries per domain

 Not enough to limit to different names, as TTL could be set very
low and the same name could be flooded

e Tools
— DNSTop —realtime DNS monitor

— DNSLogger — “Passive DNS Replication” engine

« “Passive DNS replication is atechnology which constructs zone
replicas without cooperation from zone administrators, based on
captured name server responses.”

 Should be supporting TXT records soon
 Used in RUS-CERT project

Copyright© 2004 Avaya Inc. All rights reserved 24

File Edit Wew Go Bookmarks Tools Help

QEI - E} - %I I:) @ |% http: ffcert.uni-stuttgart. de/stats fdns-replication. php?query =yahoo. com&time =&st V| @ Go |@,

T RUS-CERT runs a DNS replication server as a service to the CERT community. By using this 25
X web page, vou can guery the replication database and obtain information that is not readily
Uni-Firewall available through traditional DNS queries. E
Top 5
Mailinglisten Do not run antomatic queries against this database. If you want to submit bulk queries, please
Bhssworttest contact the operator.
p‘!'g"ﬁ Query string: |3rahuu.ccm |
Projekte Time: | |
Archive
o
The server returned the following data:
Universitat Stuttgart ..o . com z 63.251.163.115
Rechenzentrumder vahoo.com a 66.94.234.13
Universitat Stuttgart vanoo.com A 216.109.112.135
yahoo.com M 1 mxl.mail.yahoo.com
vahoo.com M 1 mx2.mail.yahoo.com
Suche in Meldungen yahoo.com MX 5 mx4.mail.yahoo.com
| | vahoo.com M 1 mx3.mail.yahoo.com
Los geht's ug . com MX 0 yahoo.com v
Done
Copyright© 2004 Avaya Inc. All rights reserved 25

Establishing DNS Tunnels [O]

 There's more to networking than packetized bytes

— TCP establishes a stream, by which bytes enter one side
and exit the other. And either side can talk.

e DNSis not TCP

— TCP moves bytestreams, DNS moves records
* Blocks of data

— TCP lets either side speak first, while in DNS, the server
can only talk if the client asks something

— TCP is 8 bit clean, while DNS can only move a limited set
of characters in each direction (Base64 / Base32)

— This seems so familiar...

Copyright© 2004 Avaya Inc. All rights reserved 26

Establishing DNS Tunnels[1]

 The semantics of DNS are surprisingly similar to those of HTTP

— Primary difference — HTTP has unlimited payloads per
“download session” but DNS doesn'’t

« Exception: Could use AXFR DNS Zone Transfers, which require
DNS’s TCP mode but don’t have a maximum size limit

 Many tools have been written with the “lets tunnel everything over
HTTP” methodology because it gets through firewalls easier (see
first point)

— SOAP (RPC over HTTP)
— GNU httptunnel (TCP Stream over HTTP)

* Since DNS has similar semantics, we can pull off similar feats
— droute: DNS Stream Router

Copyright© 2004 Avaya Inc. All rights reserved 27

Establishing DNS Tunnels[2]

 Droute: TCP Streaming over DNS
— “Classic” tool from OzymanDNS

— Interacts with nomde to allow arbitrary TCP sessions (ordered
and reliable bytestreams) to pass over DNS

— Commonly paired with SSH to allow arbitrary network
connectivity using Dynamic Forwarding

* Implementation Details

— Single threaded state machine. Upstream and downstream
unlinked. <1K/s, usable for shell and IM only.

— Upstream: Wait for data. If any to send, send 110 bytes, wait
until remote side acknowledges receipt. Repeat.

— Downstream: Monitor for data on delay timer. If any to
receive, ask for 220 bytes. If so, set delay to minimum and
retry. If not, triple delay up until maximum. Repeat.

« Upstream transmissions do minimize downstream delay

Copyright© 2004 Avaya Inc. All rights reserved 28

Alternatives to Serialization

e Serial execution makes it slow — only one packet in flight in each
direction

— TCP model is reliable and allows multiple packets in flight —
depends on an IP service being available. Could we make DNS

look look IP for TCP’s use?
« NSTX (the original net-over-DNS hack) offers this
— Linux-Only (TUN/TAP based) Kernel Interface for IP<->DNS

— Unencrypted
 5Kb/s: Why?
— IP fragments are much larger than DNS fragments

— When dealing with fragmentation, drop any fragment, all fragments
must wait

— This increases latency, which TCP congestion control interprets
(bandwidth-delay product) as lowered capacity

— Need something designed for DNS

Copyright© 2004 Avaya Inc. All rights reserved 29

Comparing Operating Layers

* DNS vs. IP as the underlying network (ignore that DNS runs on top
of IP)

— Both IP and DNS transfer records, not bytes

— Both IP and DNS are unreliable (though DNS clients hide this
with a crude retransmit mechanism)

— |IP allows both sides to speak first

» Firewalls occasionally interfere at the beginning of a L4 session,
but once one is established, either side can send a packet

— IP is 8 bit clean

— IP networks are built to route large amounts
 Presumption: Congestion is “strange”
 That being said, neither layer adds significant latency

— DNS allows me to choose from a large number of routes

« |P forces me to accept the network’s routes (or those few hops
that still support IP Source Route)

Copyright© 2004 Avaya Inc. All rights reserved 30

Designing an appropriate protocol

« FRP: Fragile Router Protocol

FTP -> FSP -> FRP
“Fraggle Routing” ©

 Rate based, not window based

Not attempting to discover network capacity — it changes with
the degree we stress it.

Build to handle DNS’s peculiar size and request model

Able to cache large amounts of out-of-order packets and
reassemble them as feasible

 Why out-of-order? Because servers do retransmits, and they
don’t appear to be rushable

Able to adapt to many routers

All complexity lives at the receiver — sender fulfills all requests
it can

 Client/server model forces this

Copyright© 2004 Avaya Inc. All rights reserved 31

FAVAYA

Joys of FRP Design:
The more you ask for, the more you get.

70

W Total Requests

@ Successful Replies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Copyright© 2004 Avaya Inc. All rights reserved 32

FRP Loop Architecture

Send

— If more than $delay_ms milliseconds since the last send, send a
guery to arandom target on the list

Receive:

— While there are packets for us to parse, compare incoming packets to
our sentlist and, if we get aresponse we were looking for, add it to
the flush list.

Monitor:

— If more than $stats_interval seconds since the last monitoring
(generally, every second), collect statistics.

— If measured success rate is lower than desired, increase interpacket
latency. If higher, decrease.

— If we've got any requests that have been out for more than
$retrans_delay, put the retransmit at the start of the send queue.

Flush:

— While the flush list contains the required bytes at the left side of our
window, flush to the chosen output medium.

Copyright© 2004 Avaya Inc. All rights reserved 33

FRP Performance

« CPU bound
— ~6ms per 768 byte EDNSO

 Performance is still pretty stunning
— ~22KiB/s streaming for 220 byte packets
— ~65KiB/s streaming for 768 byte packets
e Surprisingly adaptive

— Able to adjust to changing network conditions, slow
hosts, multiple nameservers

 Demo

Copyright© 2004 Avaya Inc. All rights reserved 34

Next Steps

 Immature Code
— Lots and lots of magic constants
— API still in wild flux

— OzyResolve get method not embeddable = Not yet ported to
SSH over DNS

« Thank you broken perl threads

— Eventually need to stabilize and recode in C/C++ for
performance

* Protocol Fixes

— Per-server statistics, better support for multiserver
« New domains

— Massive Multipath Wireless

— Heavily Peered Environments

« Actively requesting individual packets eliminates a number of
issues, like dealing with fragsmented ranges

Copyright© 2004 Avaya Inc. All rights reserved 3

Pause for Impact

e SO, In summary:
— We can move arbitrary data.

— We can bounce it off arbitrary servers.
e Over 150K on 64.*, over 2M total

— We can store data in a hop-by-hop basis
— High speed operations are now feasible.

« “DNS is a globally deployed, routing, caching overlay
network running astride the entire public and private
Internet.”

— You can’t ignore it any longer.

Copyright© 2004 Avaya Inc. All rights reserved 36

