
Attacking Distributed Systems
The DNS Case Study

Copyright© 2003 Avaya Inc. All rights reserved Avaya - Proprietary (Restricted) Solely for authorized persons having a need to know pursuant to Company instructions

Dan Kaminsky, CISSP
Senior Security Consultant

Copyright© 2004 Avaya Inc. All rights reserved 2

Your Friendly Investigator

• Who am I?
– Senior Security Consultant, Avaya Enterprise Security

Practice
– Author of “Paketto Keiretsu”, a collection of advanced

TCP/IP manipulation tools
– Speaker at Black Hat Briefings

• Black Ops of TCP/IP series
• Gateway Cryptography w/ OpenSSH

– Protocol Geek

Copyright© 2004 Avaya Inc. All rights reserved 3

What We’re Here To Do Today

• Discuss vulnerabilities in the design of DNS
– Not going to speak about vulnerabilities of specific

implementations
– Will discuss structural faults – problems that necessarily

had to happen given the semi-anonymous formation of
the network

• Discuss how these vulnerabilities can inform the design
of other systems

Copyright© 2004 Avaya Inc. All rights reserved 4

The Subject Of Our Investigation

• DNS: The Domain Name System
– Created by Paul Mockapetris in 1983
– Fast, easy, accurate way to, given a host’s name, find out it’s number

(“IP Address”)
• The Internet doesn’t run on names any more than the telephone

network does – everything is numbered for efficiency.
– “Internet’s equivalent of 411”

• Actually more critical – people will keep the same phone number
for years, while some services change their IP addresses
constantly

– Was becoming a management nightmare to pass around lists
of names/numbers

– “Call 411 by default”
• Internet has no secure mechanism for sending a fail/redirect

message (“the number you’ve called has been disconnected, the
new number is…”)

Copyright© 2004 Avaya Inc. All rights reserved 5

The Nature Of Our Investigation

• The Question: Is it possible for DNS to do anything more interesting than
return numbers from names?

– Simple answer: Of course, it can return mail servers, names from
numbers, SPF records, etc.

– Better answer: Why do you ask?
• Second oldest “uncontested protocol” for what it does

– Telnet’s moved to SSH, Gopher and FTP moved to HTTP
– Only SMTP is in a similar class

• Globally deployed, universally employed
• Routes everywhere, through pretty much any network.
• Was heavily queried during recent MS Blaster worm.

– Ultimate answer: Yes, or this would be a very short talk!
• The strategy: Does DNS have any unexpected similarities – “homologies”

– to other protocols I consider interesting?

Copyright© 2004 Avaya Inc. All rights reserved 6

Homologies Within The Structure of DNS

• DNS Proxies
– Those that do not know will ask those that do
– “Recursive Lookup”
– Lookups are heavy processes; was necessary to centralize the work

• DNS Caches
– If one name server does proxy for another, results are not ephemeral,

rather they’re cached for a definable amount of time (up to a week in
most implementations)

• DNS Routes
– Those that don’t know, and don’t want to ask those that do, can

instead reply with a route recommendation of who else to speak to.
Those that receive route recommendations will generally follow them.

– Used to implement the DNS hierarchy
• .com routes to doxpara.com routes to www.doxpara.com

– “Iterative Lookup”

Copyright© 2004 Avaya Inc. All rights reserved 7

Mapping the Domain Name System

• Why?
– “Over 150K servers on 64.* alone!”
– Do we have tools?
– dnstracer (DJB)

• [determine] where a given Domain Name Server (DNS) gets its
information from, and [follow] the chain of DNS servers back to
the servers which know the data.

– dnstracer (mavetju)
67.15.31.131 (67.15.31.131)

|___ ns1.speakeasy.net [81.64.in-addr.arpa]
(216.254.0.9)
| |___ dsl081-064-164.sfo1.dsl.speakeasy.net
[164.64.81.64.in-addr.arpa] (64.81.64.164)

– Heady claims, but these tools only describe internetwork
relationships, not intranetwork

Copyright© 2004 Avaya Inc. All rights reserved 8

DNS Coalescence

• Of those 150K servers, many are:
– The same server with multiple interfaces
– Servers in a “silent hierarchy”

• Alice maintains her own cache, but if she can’t answer a
query, she connects to another upstream server rather than
some Internet host. Its cache is checked, and so on.

• Would be very interesting to extract these relationships
– Dependency checking – which servers trust one another

to provide the correct name?
• Vulnerability scope expansion – which other IP’s, if

penetrated, would cause harm to name services?
– Pretty pictures

Copyright© 2004 Avaya Inc. All rights reserved 9

Enter The Snoop

• DNS Cache Snooping:
– Name servers maintain caches

• Static, for authoritative domains
• Dynamic, for results from recursively acquired data

– By disabling the RD(Recursion Desired) bit, clients can search
only these caches

• Not necessary, but “ecological”
– Possible to make judgements about the environment of a

name server by what names it has stored
• Best paper on the subject: “DNS Cache Snooping” by Luis

Grangeia
– Which mail servers are talking to which, what typos people are going

to, where hard-to-find people who only trust a few domains might be,
etc.

• We can inject content into caches, then look for it elsewhere to
see if our injection spread

Copyright© 2004 Avaya Inc. All rights reserved 10

Mapping DNS[0]:
Simple, Accurate, Dead Slow
• 1. Query one server recursively with something obscure/unique

(“nonced”)
– dig @64.81.64.164 1234.sitefinder.com
…
1234.sitefinder.com. 86400 IN A
64.65.61.123

• 2. Flood every other server nonrecursively, looking for the nonce
– dig +norecurse @4.2.2.1 1234.sitefinder.com
…
1234.sitefinder.com. IN A

• 3. Recoil in horror as you realize this is O(N^2); linking 90K
servers to eachother this way requires ~8.1B scans that must be
done before cached entries expire

– There must be a better way!

Copyright© 2004 Avaya Inc. All rights reserved 11

On TTL’s

• Cache entries aren’t just stored for some amount of
time and silently aged out

– DNS publishes time remaining for cache entries, to make
sure the distributed caches all delete old data at roughly
the same time

• The clock visibly runs for cached entries
• Seconds are quite reasonably standardized ☺

– If entries have a fixed, constant starting TTL(“Time To
Live”), then (Starting TTL) – (Measured TTL) = (Time
Since Server Queried This Name)

• 3600 starting - 3580 measured = 20 seconds since query

Copyright© 2004 Avaya Inc. All rights reserved 12

Mapping DNS[1]:
Less Simple, Surprisingly Accurate, FAST
• 1. Acquire large list of servers (demo shortly). Shuffle this list.
• 2. Request same obscure name from all of them. (~100/sec is

fine). Note the starting TTL of this name. Record the time each
query was sent.

• 3. Analyze responses.
– Those where TTL(response) == TTL(initial) had no cache to

depend on.
– Those where TTL(response) < TTL(initial) depended on

another cache. Use the difference between the two to figure
out which caches you were scanning at the time.

• $initial_ttl = 3600;
• $sendtime = (int $then) - $start;
• $recvtime = (int gettimeofday()) - ($initial_ttl - $packet_ttl) - $start;

– There will be many candidates. So reshuffle and rescan.
• 2 or 3 should be enough for all but the fastest scanners

Copyright© 2004 Avaya Inc. All rights reserved 13

Optimizing Time

• Integration of latency measurement
– Skew between when packet is sent and when reception is

noted can degrade detected correlations, especially if jitter is
high

– Solution: Measure latency between sending and receiving
• Traditional approaches:

– Send, wait, receive, check how much time elapsed. Slow!
– Send, store the fact that a packet was sent along with the time it was

sent, receive, check difference. Easy in Perl, but inelegant.
• Scanrand Approach

– Query packets go out with a DNS ID, that must be reflected back
– 16 bits of capacity = 65536 potential values = Range for 65 10ms

intervals or 6.5 1ms intervals
– Doesn’t alter ability of data to get cached (like putting timestamp in

name being looked up)

Copyright© 2004 Avaya Inc. All rights reserved 14

Combining Approaches

• Use fast method to show relationships, then slow method to
perfect them

– Slow method quite fast at validating theories
– Slow method also much better for differentiating:

• Master/Slave
– When slave has data cached, master has data cached. But when

master has data cached, slave may not. This is because master has
many slaves.

• Identity
– Whenever one IP has data cached, the other IP has data cached.

Either they’re doing some strange aggressive cache sharing
mechanism or they’re the same physical server

• DNS caches being remotely visible has other effects…
– Can be used to (anonymously) publish and acquire data, very

very slowly.

Copyright© 2004 Avaya Inc. All rights reserved 15

Single-Bit Data Transfer[0]: HOWTO

• Sending:
– Step 1: Split message into individual bits.
– Step 2: For each byte that will be available for reading, do a recursive

lookup against a “start bit” address.
– Step 3: For each bit that is 1, do a recursive lookup against a

wildcard-hosted name that identifies that bit.
• Receiving:

– Step 1: Do a lookup for the first byte’s start bit. If set to 1…
– Step 2: Do non-recursive lookups against names that map against all

eight bits. Those names that return answers are 1, those that don’t
are 0.

– Step 3: Integrate bits into a byte and save. Increment byte counter
and return to step 1.

• Deleting:
– Optional: Simply do a recursive lookup to clear the 0’s

• Larger scale transmission is, of course, quite possible

Copyright© 2004 Avaya Inc. All rights reserved 16

Tunneling Arbitrary Content in DNS
HOWTO [0]
• Note: This isn’t anything new

– Text adventures over DNS
– Calculators over DNS
– Bittorrent Seeds over DNS

• Upstream: Encode data in the name being looked up (A,TXT,etc)
– Restrictions: Total length <253chars, no more than 63

characters per dots, only 63 allowable characters
– Solution: Use Base32(a-z,0-6) to encode 5 bits per character,

~110 bytes total
– Example:

zjabdbcctvaojbz55mqwe224ceyeltkbhyaasncpljgc53pirtsmuzi
hcjrw.uujca7ytd3tifmmglrcsl65r3w3ba4mixix6nemd6eulfy2ss
62xmff3zecv.ttivj2trx642zlrgpbwo2f2glnxk7yxyu3pfeiuvgaw
c7mijpqn5sh4j.63034-0.id-1187.up.foo.com

– Though protocol appears to allow multiple “questions” per packet, no
actual implementation parses or forwards such (AA bit problems)

Copyright© 2004 Avaya Inc. All rights reserved 17

Tunneling Arbitrary Content in DNS
HOWTO [1]
• Downstream: More flexible

– Standard DNS packets must be <512 bytes at IP layer
• Prevents IP fragmentation from interfering

– Traditional approach: TXT records
• Restrictions: Minimal. Unstructured, high capacity, provides for

subrecords of up to 128 bytes, subrecords are not reordered.
Data probably needs to be ASCII-compatible.

• Solution: Use Base64(a-z,A-Z,0-9,=,/) to encode 6 bits per
character.

• Example:
– "MCaydY5mzxGm2QCqAGLObIAKAAAAAAAACAAAAAECMyaydY5mzxGm2Q
CqAGLObCwAAAAAAAAAAgAC\010AAIAAgACAAAAAAAAAAAAAACh3KuMR
6nPEY7kAMAMIFNlaAAAAAAAAAAlpqVwQ5lVTr9mPCY=\010"
"mP5svdFBDwAAAAAAEOVFQJwIxQGfAwAAAAAAAECx5TcAAAAAwL2mNQ
AAAACIEwAAAAAAAAIAAAAz\010BAAAMwQAADtpAQC1A79fLqnPEY7jA
MAMIFNlLwcAAAAAAAAR0tOruqnPEY7mAMAMIFNlBgA=\010"

Copyright© 2004 Avaya Inc. All rights reserved 18

Tunneling Arbitrary Content in DNS
HOWTO [2]
• Naïve approach to tunnel suppression: Lets just

censor TXT records
– Data leaving network can be much more problematic

than data entering -- doesn’t address that
– Breaks SPF, which encodes itself in TXT
– Don’t need TXT for arbitrary content

Copyright© 2004 Avaya Inc. All rights reserved 19

Tunneling Arbitrary Content in DNS
HOWTO [2]
• Other downstream approaches

– MX records (mail)
• Restrictions: Addresses are shuffled upon delivery to client, to

compensate for bad API’s (gethostbyname)
• Solution (care of Dave Hulton): MX records contain precedence

values, which describe the order in which mail servers should be
used. Can also use to describe order in which packets should be
reassembled.

– A records (foo.com -> 1.2.3.4)
• Restrictions: Addresses shuffled, and no precedence value

exists.
• Solution: We can only fit ~16 IP’s into a single response. We can

use 4 of 32 bits in each IP to describe the order in which the
shuffled addresses should be reassembled. Total capacity
becomes ~56 bytes per packet.

Copyright© 2004 Avaya Inc. All rights reserved 20

Increasing Per-Packet Bandwidth For DNS:
EDNS0
• Size limitations didn’t just inconvenience tunnels

– AOL/Yahoo had many, many IP addresses they wanted
users to distribute their load across, and they bumped
up against the 512 byte limit

– DNSSEC wanted to sign records, but not at the expense
of storage capacity

– So capacity had to be increased
• Enter EDNS0, which allows a sender to describe the largest

DNS packet his implementation can support.
• Size allowed to exceed IP fragmentation limits (4096 byte

advertisements common in wild)

Copyright© 2004 Avaya Inc. All rights reserved 21

Effect of EDNS0 on TXT Tunnel
Downstream [0]

Copyright© 2004 Avaya Inc. All rights reserved 22

Effect of EDNS0 on TXT Tunnel
Downstream [1]
• TXT Capacity increases to ~1024 bytes

– While EDNS0 claims to allow IP fragmentation in DNS
queries, implementations seem to fail if you actually ask
them to use it.

– 1024 byte transfers = 1453 byte DNS packets. This is too
close to the 1500 byte hard limit on Ethernet/IP.

• 768 byte encapsulations tend to be reliable.
– More than 3x faster than 220 byte default

– Efficiency improves from 50% to 66%!!!
• Could be worse…there could be an XML schema involved.

Copyright© 2004 Avaya Inc. All rights reserved 23

Suppressing DNS Tunnels [0]

• Ongoing research ☺
• Per-packet algorithms will have trouble differentiating

odd but legitimate traffic. Think flag, not block
– Excessively large requests and responses
– Class D or E IP addresses (224-255.*.*.*)

• Will break certain multicast implementations!
– “High Entropy Traffic”

• DNS names tend to follow English trigraph distributions.
Deviations from these trigraphs could be flagged.

– Interesting things happen with DNS and Unicode. RFC3492
(“Punycode”) creates a 1:1 mapping between ASCII names
and Unicode that isn’t Base64. (Yes, there are potential
exploits w/ naïve Unicode renderers)

Copyright© 2004 Avaya Inc. All rights reserved 24

Suppressing DNS Tunnels [1]

• Best (thus far) approaches involves multi-packet analysis
– Maximum number of queries per minute
– Maximum number of queries per domain

• Not enough to limit to different names, as TTL could be set very
low and the same name could be flooded

• Tools
– DNSTop – realtime DNS monitor
– DNSLogger – “Passive DNS Replication” engine

• “Passive DNS replication is a technology which constructs zone
replicas without cooperation from zone administrators, based on
captured name server responses.”

• Should be supporting TXT records soon
• Used in RUS-CERT project

Copyright© 2004 Avaya Inc. All rights reserved 25

RUS-CERT DNSLogger Archive

Copyright© 2004 Avaya Inc. All rights reserved 26

Establishing DNS Tunnels [0]

• There’s more to networking than packetized bytes
– TCP establishes a stream, by which bytes enter one side

and exit the other. And either side can talk.
• DNS is not TCP

– TCP moves bytestreams, DNS moves records
• Blocks of data

– TCP lets either side speak first, while in DNS, the server
can only talk if the client asks something

– TCP is 8 bit clean, while DNS can only move a limited set
of characters in each direction (Base64 / Base32)

– This seems so familiar…

Copyright© 2004 Avaya Inc. All rights reserved 27

Establishing DNS Tunnels[1]

• The semantics of DNS are surprisingly similar to those of HTTP
– Primary difference – HTTP has unlimited payloads per

“download session” but DNS doesn’t
• Exception: Could use AXFR DNS Zone Transfers, which require

DNS’s TCP mode but don’t have a maximum size limit
• Many tools have been written with the “lets tunnel everything over

HTTP” methodology because it gets through firewalls easier (see
first point)

– SOAP (RPC over HTTP)
– GNU httptunnel (TCP Stream over HTTP)

• Since DNS has similar semantics, we can pull off similar feats
– droute: DNS Stream Router

Copyright© 2004 Avaya Inc. All rights reserved 28

Establishing DNS Tunnels[2]

• Droute: TCP Streaming over DNS
– “Classic” tool from OzymanDNS
– Interacts with nomde to allow arbitrary TCP sessions (ordered

and reliable bytestreams) to pass over DNS
– Commonly paired with SSH to allow arbitrary network

connectivity using Dynamic Forwarding
• Implementation Details

– Single threaded state machine. Upstream and downstream
unlinked. <1K/s, usable for shell and IM only.

– Upstream: Wait for data. If any to send, send 110 bytes, wait
until remote side acknowledges receipt. Repeat.

– Downstream: Monitor for data on delay timer. If any to
receive, ask for 220 bytes. If so, set delay to minimum and
retry. If not, triple delay up until maximum. Repeat.

• Upstream transmissions do minimize downstream delay

Copyright© 2004 Avaya Inc. All rights reserved 29

Alternatives to Serialization

• Serial execution makes it slow – only one packet in flight in each
direction

– TCP model is reliable and allows multiple packets in flight –
depends on an IP service being available. Could we make DNS
look look IP for TCP’s use?

• NSTX (the original net-over-DNS hack) offers this
– Linux-Only (TUN/TAP based) Kernel Interface for IP<->DNS
– Unencrypted

• 5Kb/s: Why?
– IP fragments are much larger than DNS fragments
– When dealing with fragmentation, drop any fragment, all fragments

must wait
– This increases latency, which TCP congestion control interprets

(bandwidth-delay product) as lowered capacity

– Need something designed for DNS

Copyright© 2004 Avaya Inc. All rights reserved 30

Comparing Operating Layers

• DNS vs. IP as the underlying network (ignore that DNS runs on top
of IP)

– Both IP and DNS transfer records, not bytes
– Both IP and DNS are unreliable (though DNS clients hide this

with a crude retransmit mechanism)
– IP allows both sides to speak first

• Firewalls occasionally interfere at the beginning of a L4 session,
but once one is established, either side can send a packet

– IP is 8 bit clean
– IP networks are built to route large amounts

• Presumption: Congestion is “strange”
• That being said, neither layer adds significant latency

– DNS allows me to choose from a large number of routes
• IP forces me to accept the network’s routes (or those few hops

that still support IP Source Route)

Copyright© 2004 Avaya Inc. All rights reserved 31

Designing an appropriate protocol

• FRP: Fragile Router Protocol
– FTP -> FSP -> FRP
– “Fraggle Routing” ☺

• Rate based, not window based
– Not attempting to discover network capacity – it changes with

the degree we stress it.
– Build to handle DNS’s peculiar size and request model
– Able to cache large amounts of out-of-order packets and

reassemble them as feasible
• Why out-of-order? Because servers do retransmits, and they

don’t appear to be rushable
– Able to adapt to many routers
– All complexity lives at the receiver – sender fulfills all requests

it can
• Client/server model forces this

Copyright© 2004 Avaya Inc. All rights reserved 32

Joys of FRP Design:
The more you ask for, the more you get.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Total Requests
Successful Replies

Copyright© 2004 Avaya Inc. All rights reserved 33

FRP Loop Architecture

• Send
– If more than $delay_ms milliseconds since the last send, send a

query to a random target on the list
• Receive:

– While there are packets for us to parse, compare incoming packets to
our sentlist and, if we get a response we were looking for, add it to
the flush list.

• Monitor:
– If more than $stats_interval seconds since the last monitoring

(generally, every second), collect statistics.
– If measured success rate is lower than desired, increase interpacket

latency. If higher, decrease.
– If we've got any requests that have been out for more than

$retrans_delay, put the retransmit at the start of the send queue.
• Flush:

– While the flush list contains the required bytes at the left side of our
window, flush to the chosen output medium.

Copyright© 2004 Avaya Inc. All rights reserved 34

FRP Performance

• CPU bound
– ~6ms per 768 byte EDNS0

• Performance is still pretty stunning
– ~22KiB/s streaming for 220 byte packets
– ~65KiB/s streaming for 768 byte packets

• Surprisingly adaptive
– Able to adjust to changing network conditions, slow

hosts, multiple nameservers
• Demo

Copyright© 2004 Avaya Inc. All rights reserved 35

Next Steps

• Immature Code
– Lots and lots of magic constants
– API still in wild flux
– OzyResolve get method not embeddable = Not yet ported to

SSH over DNS
• Thank you broken perl threads

– Eventually need to stabilize and recode in C/C++ for
performance

• Protocol Fixes
– Per-server statistics, better support for multiserver

• New domains
– Massive Multipath Wireless
– Heavily Peered Environments

• Actively requesting individual packets eliminates a number of
issues, like dealing with fragmented ranges

Copyright© 2004 Avaya Inc. All rights reserved 36

Pause for Impact

• So, in summary:
– We can move arbitrary data.
– We can bounce it off arbitrary servers.

• Over 150K on 64.*, over 2M total
– We can store data in a hop-by-hop basis
– High speed operations are now feasible.

• “DNS is a globally deployed, routing, caching overlay
network running astride the entire public and private
Internet.”

– You can’t ignore it any longer.

