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Your Friendly Investigator

• Who am I?
– Senior Security Consultant, Avaya Enterprise Security 

Practice
– Author of “Paketto Keiretsu”, a collection of advanced 

TCP/IP manipulation tools
– Speaker at Black Hat Briefings

• Black Ops of TCP/IP series
• Gateway Cryptography w/ OpenSSH

– Protocol Geek



Copyright© 2004 Avaya Inc. All rights reserved 3

What We’re Here To Do Today

• Discuss vulnerabilities in the design of DNS
– Not going to speak about vulnerabilities of specific 

implementations
– Will discuss structural faults – problems that necessarily 

had to happen given the semi-anonymous formation of 
the network

• Discuss how these vulnerabilities can inform the design 
of other systems
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The Subject Of Our Investigation

• DNS:  The Domain Name System
– Created by Paul Mockapetris in 1983
– Fast, easy, accurate way to, given a host’s name, find out it’s number 

(“IP Address”)
• The Internet doesn’t run on names any more than the telephone 

network does – everything is numbered for efficiency. 
– “Internet’s equivalent of 411”

• Actually more critical – people will keep the same phone number 
for years, while some services change their IP addresses 
constantly

– Was becoming a management nightmare to pass around lists 
of names/numbers

– “Call 411 by default”
• Internet has no secure mechanism for sending a fail/redirect 

message (“the number you’ve called has been disconnected, the 
new number is…”)
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The Nature Of Our Investigation

• The Question:  Is it possible for DNS to do anything more interesting than 
return numbers from names?

– Simple answer:  Of course, it can return mail servers, names from 
numbers, SPF records, etc.

– Better answer:  Why do you ask?
• Second oldest “uncontested protocol” for what it does

– Telnet’s moved to SSH, Gopher and FTP moved to HTTP
– Only SMTP is in a similar class

• Globally deployed, universally employed
• Routes everywhere, through pretty much any network.
• Was heavily queried during recent MS Blaster worm.

– Ultimate answer:  Yes, or this would be a very short talk!
• The strategy:  Does DNS have any unexpected similarities – “homologies”

– to other protocols I consider interesting?
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Homologies Within The Structure of DNS

• DNS Proxies
– Those that do not know will ask those that do
– “Recursive Lookup”
– Lookups are heavy processes; was necessary to centralize the work

• DNS Caches
– If one name server does proxy for another, results are not ephemeral, 

rather they’re cached for a definable amount of time (up to a week in 
most implementations)

• DNS Routes
– Those that don’t know, and don’t want to ask those that do, can 

instead reply with a route recommendation of who else to speak to.  
Those that receive route recommendations will generally follow them.

– Used to implement the DNS hierarchy
• .com routes to doxpara.com routes to www.doxpara.com

– “Iterative Lookup”
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Mapping the Domain Name System

• Why?
– “Over 150K servers on 64.* alone!”
– Do we have tools?
– dnstracer (DJB)

• [determine] where a given Domain Name Server (DNS) gets its 
information from, and [follow] the chain of DNS servers back to 
the servers which know the data. 

– dnstracer (mavetju)
67.15.31.131 (67.15.31.131) 

|\___ ns1.speakeasy.net [81.64.in-addr.arpa] 
(216.254.0.9) 
|     |\___ dsl081-064-164.sfo1.dsl.speakeasy.net 
[164.64.81.64.in-addr.arpa] (64.81.64.164)

– Heady claims, but these tools only describe internetwork
relationships, not intranetwork



Copyright© 2004 Avaya Inc. All rights reserved 8

DNS Coalescence

• Of those 150K servers, many are:
– The same server with multiple interfaces
– Servers in a “silent hierarchy”

• Alice maintains her own cache, but if she can’t answer a 
query, she connects to another upstream server rather than 
some Internet host.  Its cache is checked, and so on.

• Would be very interesting to extract these relationships
– Dependency checking – which servers trust one another 

to provide the correct name?
• Vulnerability scope expansion – which other IP’s, if 

penetrated, would cause harm to name services?
– Pretty pictures
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Enter The Snoop

• DNS Cache Snooping:  
– Name servers maintain caches

• Static, for authoritative domains
• Dynamic, for results from recursively acquired data

– By disabling the RD(Recursion Desired) bit, clients can search 
only these caches

• Not necessary, but “ecological”
– Possible to make judgements about the environment of a 

name server by what names it has stored
• Best paper on the subject:  “DNS Cache Snooping” by Luis 

Grangeia
– Which mail servers are talking to which, what typos people are going 

to, where hard-to-find people who only trust a few domains might be, 
etc.

• We can inject content into caches, then look for it elsewhere to
see if our injection spread
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Mapping DNS[0]:
Simple, Accurate, Dead Slow
• 1.  Query one server recursively with something obscure/unique 

(“nonced”)
– dig @64.81.64.164 1234.sitefinder.com
…
1234.sitefinder.com.    86400   IN      A       
64.65.61.123

• 2.  Flood every other server nonrecursively, looking for the nonce
– dig +norecurse @4.2.2.1 1234.sitefinder.com
…
1234.sitefinder.com.           IN      A

• 3.  Recoil in horror as you realize this is O(N^2); linking 90K 
servers to eachother this way requires ~8.1B scans that must be 
done before cached entries expire

– There must be a better way!
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On TTL’s

• Cache entries aren’t just stored for some amount of 
time and silently aged out

– DNS publishes time remaining for cache entries, to make 
sure the distributed caches all delete old data at roughly 
the same time

• The clock visibly runs for cached entries
• Seconds are quite reasonably standardized ☺

– If entries have a fixed, constant starting TTL(“Time To 
Live”), then (Starting TTL) – (Measured TTL) = (Time 
Since Server Queried This Name)

• 3600 starting - 3580 measured = 20 seconds since query
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Mapping DNS[1]:
Less Simple, Surprisingly Accurate, FAST
• 1.  Acquire large list of servers (demo shortly).  Shuffle this list.
• 2.  Request same obscure name from all of them.  (~100/sec is 

fine).  Note the starting TTL of this name.  Record the time each 
query was sent.

• 3.  Analyze responses.
– Those where TTL(response) == TTL(initial) had no cache to 

depend on.
– Those where TTL(response) < TTL(initial) depended on 

another cache.  Use the difference between the two to figure 
out which caches you were scanning at the time.

• $initial_ttl = 3600;
• $sendtime = (int $then) - $start;
• $recvtime = (int gettimeofday()) - ($initial_ttl - $packet_ttl) - $start;

– There will be many candidates.  So reshuffle and rescan.
• 2 or 3 should be enough for all but the fastest scanners
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Optimizing Time

• Integration of latency measurement
– Skew between when packet is sent and when reception is 

noted can degrade detected correlations, especially if jitter is
high

– Solution:  Measure latency between sending and receiving
• Traditional approaches:

– Send, wait, receive, check how much time elapsed.  Slow! 
– Send, store the fact that a packet was sent along with the time it was 

sent, receive, check difference.  Easy in Perl, but inelegant.
• Scanrand Approach

– Query packets go out with a DNS ID, that must be reflected back
– 16 bits of capacity = 65536 potential values = Range for 65 10ms

intervals or 6.5 1ms intervals
– Doesn’t alter ability of data to get cached (like putting timestamp in

name being looked up)
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Combining Approaches

• Use fast method to show relationships, then slow method to 
perfect them

– Slow method quite fast at validating theories
– Slow method also much better for differentiating:

• Master/Slave
– When slave has data cached, master has data cached.  But when 

master has data cached, slave may not.  This is because master has 
many slaves.

• Identity
– Whenever one IP has data cached, the other IP has data cached.  

Either they’re doing some strange aggressive cache sharing 
mechanism or they’re the same physical server

• DNS caches being remotely visible has other effects…
– Can be used to (anonymously) publish and acquire data, very 

very slowly.
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Single-Bit Data Transfer[0]: HOWTO

• Sending:
– Step 1:  Split message into individual bits.
– Step 2:  For each byte that will be available for reading, do a recursive 

lookup against a “start bit” address.
– Step 3:  For each bit that is 1, do a recursive lookup against a

wildcard-hosted name that identifies that bit.
• Receiving:

– Step 1:  Do a lookup for the first byte’s start bit.  If set to 1…
– Step 2:  Do non-recursive lookups against names that map against all 

eight bits.  Those names that return answers are 1, those that don’t 
are 0.

– Step 3:  Integrate bits into a byte and save.  Increment byte counter 
and return to step 1.

• Deleting:
– Optional:  Simply do a recursive lookup to clear the 0’s

• Larger scale transmission is, of course, quite possible
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Tunneling Arbitrary Content in DNS 
HOWTO [0]
• Note:  This isn’t anything new

– Text adventures over DNS
– Calculators over DNS
– Bittorrent Seeds over DNS

• Upstream:  Encode data in the name being looked up (A,TXT,etc)
– Restrictions:  Total length <253chars, no more than 63 

characters per dots, only 63 allowable characters
– Solution:  Use Base32(a-z,0-6) to encode 5 bits per character, 

~110 bytes total
– Example:  

zjabdbcctvaojbz55mqwe224ceyeltkbhyaasncpljgc53pirtsmuzi
hcjrw.uujca7ytd3tifmmglrcsl65r3w3ba4mixix6nemd6eulfy2ss
62xmff3zecv.ttivj2trx642zlrgpbwo2f2glnxk7yxyu3pfeiuvgaw
c7mijpqn5sh4j.63034-0.id-1187.up.foo.com

– Though protocol appears to allow multiple “questions” per packet, no 
actual implementation parses or forwards such (AA bit problems)
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Tunneling Arbitrary Content in DNS 
HOWTO [1]
• Downstream:  More flexible

– Standard DNS packets must be <512 bytes at IP layer
• Prevents IP fragmentation from interfering

– Traditional approach:  TXT records
• Restrictions:  Minimal.  Unstructured, high capacity, provides for 

subrecords of up to 128 bytes, subrecords are not reordered.  
Data probably needs to be ASCII-compatible.

• Solution:  Use Base64(a-z,A-Z,0-9,=,/) to encode 6 bits per 
character.

• Example:
– "MCaydY5mzxGm2QCqAGLObIAKAAAAAAAACAAAAAECMyaydY5mzxGm2Q
CqAGLObCwAAAAAAAAAAgAC\010AAIAAgACAAAAAAAAAAAAAACh3KuMR
6nPEY7kAMAMIFNlaAAAAAAAAAAlpqVwQ5lVTr9mPCY=\010" 
"mP5svdFBDwAAAAAAEOVFQJwIxQGfAwAAAAAAAECx5TcAAAAAwL2mNQ
AAAACIEwAAAAAAAAIAAAAz\010BAAAMwQAADtpAQC1A79fLqnPEY7jA
MAMIFNlLwcAAAAAAAAR0tOruqnPEY7mAMAMIFNlBgA=\010"
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Tunneling Arbitrary Content in DNS 
HOWTO [2]
• Naïve approach to tunnel suppression:  Lets just 

censor TXT records
– Data leaving network can be much more problematic 

than data entering -- doesn’t address that
– Breaks SPF, which encodes itself in TXT
– Don’t need TXT for arbitrary content
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Tunneling Arbitrary Content in DNS 
HOWTO [2]
• Other downstream approaches

– MX records (mail)
• Restrictions:  Addresses are shuffled upon delivery to client, to 

compensate for bad API’s (gethostbyname) 
• Solution (care of Dave Hulton):  MX records contain precedence

values, which describe the order in which mail servers should be
used.  Can also use to describe order in which packets should be
reassembled. 

– A records (foo.com -> 1.2.3.4)
• Restrictions:  Addresses shuffled, and no precedence value 

exists.
• Solution:  We can only fit ~16 IP’s into a single response.  We can 

use 4 of 32 bits in each IP to describe the order in which the 
shuffled addresses should be reassembled.  Total capacity 
becomes ~56 bytes per packet.
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Increasing Per-Packet Bandwidth For DNS:  
EDNS0
• Size limitations didn’t just inconvenience tunnels

– AOL/Yahoo had many, many IP addresses they wanted 
users to distribute their load across, and they bumped 
up against the 512 byte limit

– DNSSEC wanted to sign records, but not at the expense 
of storage capacity

– So capacity had to be increased
• Enter EDNS0, which allows a sender to describe the largest 

DNS packet his implementation can support.
• Size allowed to exceed IP fragmentation limits (4096 byte 

advertisements common in wild)
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Effect of EDNS0 on TXT Tunnel 
Downstream [0]
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Effect of EDNS0 on TXT Tunnel 
Downstream [1]
• TXT Capacity increases to ~1024 bytes

– While EDNS0 claims to allow IP fragmentation in DNS 
queries, implementations seem to fail if you actually ask 
them to use it.

– 1024 byte transfers = 1453 byte DNS packets.  This is too 
close to the 1500 byte hard limit on Ethernet/IP.

• 768 byte encapsulations tend to be reliable.
– More than 3x faster than 220 byte default

– Efficiency improves from 50% to 66%!!!
• Could be worse…there could be an XML schema involved.



Copyright© 2004 Avaya Inc. All rights reserved 23

Suppressing DNS Tunnels [0]

• Ongoing research ☺
• Per-packet algorithms will have trouble differentiating 

odd but legitimate traffic.  Think flag, not block
– Excessively large requests and responses
– Class D or E IP addresses (224-255.*.*.*)

• Will break certain multicast implementations!
– “High Entropy Traffic”

• DNS names tend to follow English trigraph distributions.  
Deviations from these trigraphs could be flagged.

– Interesting things happen with DNS and Unicode.  RFC3492 
(“Punycode”) creates a 1:1 mapping between ASCII names 
and Unicode that isn’t Base64.   (Yes, there are potential 
exploits w/ naïve Unicode renderers)
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Suppressing DNS Tunnels [1]

• Best (thus far) approaches involves multi-packet analysis
– Maximum number of queries per minute
– Maximum number of queries per domain

• Not enough to limit to different names, as TTL could be set very
low and the same name could be flooded

• Tools
– DNSTop – realtime DNS monitor
– DNSLogger – “Passive DNS Replication” engine

• “Passive DNS replication is a technology which constructs zone 
replicas without cooperation from zone administrators, based on 
captured name server responses.”

• Should be supporting TXT records soon
• Used in RUS-CERT project
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RUS-CERT DNSLogger Archive
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Establishing DNS Tunnels [0]

• There’s more to networking than packetized bytes
– TCP establishes a stream, by which bytes enter one side 

and exit the other.  And either side can talk.
• DNS is not TCP

– TCP moves bytestreams, DNS moves records
• Blocks of data

– TCP lets either side speak first, while in DNS, the server 
can only talk if the client asks something

– TCP is 8 bit clean, while DNS can only move a limited set 
of characters in each direction (Base64 / Base32)

– This seems so familiar…
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Establishing DNS Tunnels[1]

• The semantics of DNS are surprisingly similar to those of HTTP
– Primary difference – HTTP has unlimited payloads per 

“download session” but DNS doesn’t
• Exception:  Could use AXFR DNS Zone Transfers, which require 

DNS’s TCP mode but don’t have a maximum size limit
• Many tools have been written with the “lets tunnel everything over 

HTTP” methodology because it gets through firewalls easier (see 
first point)

– SOAP (RPC over HTTP)
– GNU httptunnel (TCP Stream over HTTP)

• Since DNS has similar semantics, we can pull off similar feats
– droute: DNS Stream Router
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Establishing DNS Tunnels[2]

• Droute:  TCP Streaming over DNS
– “Classic” tool from OzymanDNS
– Interacts with nomde to allow arbitrary TCP sessions (ordered 

and reliable bytestreams) to pass over DNS
– Commonly paired with SSH to allow arbitrary network 

connectivity using Dynamic Forwarding
• Implementation Details

– Single threaded state machine.  Upstream and downstream 
unlinked.  <1K/s, usable for shell and IM only.

– Upstream:  Wait for data.  If any to send, send 110 bytes, wait 
until remote side acknowledges receipt.  Repeat.

– Downstream:  Monitor for data on delay timer.  If any to 
receive, ask for 220 bytes.  If so, set delay to minimum and 
retry.  If not, triple delay up until maximum.  Repeat.

• Upstream transmissions do minimize downstream delay
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Alternatives to Serialization

• Serial execution makes it slow – only one packet in flight in each 
direction

– TCP model is reliable and allows multiple packets in flight –
depends on an IP service being available.  Could we make DNS 
look look IP for TCP’s use?

• NSTX (the original net-over-DNS hack) offers this
– Linux-Only (TUN/TAP based) Kernel Interface for IP<->DNS
– Unencrypted

• 5Kb/s:  Why?
– IP fragments are much larger than DNS fragments
– When dealing with fragmentation, drop any fragment, all fragments 

must wait
– This increases latency, which TCP congestion control interprets 

(bandwidth-delay product) as lowered capacity

– Need something designed for DNS
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Comparing Operating Layers

• DNS vs. IP as the underlying network (ignore that DNS runs on top 
of IP)

– Both IP and DNS transfer records, not bytes
– Both IP and DNS are unreliable (though DNS clients hide this 

with a crude retransmit mechanism)
– IP allows both sides to speak first

• Firewalls occasionally interfere at the beginning of a L4 session, 
but once one is established, either side can send a packet

– IP is 8 bit clean
– IP networks are built to route large amounts

• Presumption:  Congestion is “strange”
• That being said, neither layer adds significant latency

– DNS allows me to choose from a large number of routes
• IP forces me to accept the network’s routes (or those few hops 

that still support IP Source Route)
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Designing an appropriate protocol

• FRP:  Fragile Router Protocol
– FTP -> FSP -> FRP
– “Fraggle Routing” ☺

• Rate based, not window based
– Not attempting to discover network capacity – it changes with 

the degree we stress it.
– Build to handle DNS’s peculiar size and request model
– Able to cache large amounts of out-of-order packets and 

reassemble them as feasible
• Why out-of-order?  Because servers do retransmits, and they 

don’t appear to be rushable
– Able to adapt to many routers
– All complexity lives at the receiver – sender fulfills all requests 

it can
• Client/server model forces this
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Joys of FRP Design:  
The more you ask for, the more you get.
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FRP Loop Architecture

• Send
– If more than $delay_ms milliseconds since the last send, send a 

query to a random target on the list
• Receive:

– While there are packets for us to parse, compare incoming packets to 
our sentlist and, if we get a response we were looking for, add it to 
the flush list.

• Monitor:
– If more than $stats_interval seconds since the last monitoring 

(generally, every second), collect statistics.
– If measured success rate is lower than desired, increase interpacket

latency.  If higher, decrease.
– If we've got any requests that have been out for more than 

$retrans_delay, put the retransmit at the start of the send queue.  
• Flush:

– While the flush list contains the required bytes at the left side of our 
window, flush to the chosen output medium.
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FRP Performance

• CPU bound
– ~6ms per 768 byte EDNS0 

• Performance is still pretty stunning
– ~22KiB/s streaming for 220 byte packets
– ~65KiB/s streaming for 768 byte packets

• Surprisingly adaptive
– Able to adjust to changing network conditions, slow 

hosts, multiple nameservers
• Demo
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Next Steps

• Immature Code
– Lots and lots of magic constants
– API still in wild flux
– OzyResolve get method not embeddable = Not yet ported to 

SSH over DNS
• Thank you broken perl threads

– Eventually need to stabilize and recode in C/C++ for 
performance

• Protocol Fixes
– Per-server statistics, better support for multiserver

• New domains
– Massive Multipath Wireless
– Heavily Peered Environments

• Actively requesting individual packets eliminates a number of 
issues, like dealing with fragmented ranges
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Pause for Impact

• So, in summary:
– We can move arbitrary data.
– We can bounce it off arbitrary servers.

• Over 150K on 64.*, over 2M total
– We can store data in a hop-by-hop basis
– High speed operations are now feasible.

• “DNS is a globally deployed, routing, caching overlay 
network running astride the entire public and private
Internet.”

– You can’t ignore it any longer.


