
a gentle intro

to functional
package management

 with GNU Guix

Package managers
are really useful.

But they can be so frustrating!

Package managers
are really useful.

But they can be so frustrating!

Version conflicts
Old software

Suspenseful upgrades
The only way is forward
Changes affect all users

Trust?

No package management
You are on your own.

EPEL, PPAs, AUR... more conflicts, more to trust

Relocatable rpm, deb, PKGBUILD, ...

Generate system packages with e.g. fpm

Packaging is hard, let’s take snapshots.

gem, cabal, pip, cpan, npm:
more packages, less management

Giving up

Application-specific packaging

Build your own system package

Meta package managers

External repos

Functional packaging
headers
sources
build tools
libraries
... cabba9e-emacs-24.5/

 bin

 emacs

 lib

 ...

Functional packaging

cabba9e-emacs-24.5/

 bin

 emacs

 lib

 ...

dedbeef-emacs-24.5/

 bin

 emacs

 lib

 ...

Different inputs?
Different outputs.

Same inputs?
Same output!

GNU Guix
Guix client

(guix packages)

(guix store)
RPCs Build daemon

Isolated build processes
chroot with declared inputs

Store

/home/rekado/.guix-profile

/var/guix/...

 guix-profile

 42

/gnu/store

 hscq14x...-profile

 bin

 samtools

 bowtie2

 rhrdst11m...-samtools-1.2

 bin

 samtools

 include

 lud0v1c...-bowtie-2.2.4

 bin

 bowtie2

..
.

/home/rekado/.guix-profile

/var/guix/...

 guix-profile

 42

 43

/gnu/store

 hscq14x...-profile

 bin

 samtools

 bowtie2

 rhrdst11m...-samtools-1.2

 bin

 samtools

 include

 lud0v1c...-bowtie-2.2.4

 bin

 bowtie2

 z3braf1sh...-profile

 bin

 samtools

..
.

#guix on irc.freenode.net

http://gnu.org/s/guix

rekado@elephly.net

Learn more!

