
Adding native thread support to SBCL
- or -

n things every programmer should know about signal handling

Daniel Barlow
metacircles Ltd

dan@metacircles.com

July 14, 2003

Abstract

Threads (lightweight processes sharing a common
address space) are now a near-standard technique
used in many large applications, and supported -
in varying ways and to different extents - in many
languages and most operating systems. We added
thread support to the Steel Bank Common Lisp en-
vironment on Linux platforms, using the clone()
syscall : this presents interesting challenges

• Lisp’s introspective abilities and runtime en-
vironment requires OS support for things like
writing to our own instruction stream, setting
breakpoints on ourself, and finding the regis-
ter contents and faulting address in a SIGSEGV
handler. These features are often provided,
more seldom tested, and hardly ever docu-
mented.

• The primary interface to the Linux kernel is
through glibc, and defined in terms of the glibc
header files. Accessing this functionality from
languages other than C is sometimes harder
than it needs to be.

• The de-facto standard for CL multithreaded
programming was based on special-purpose
Lisp hardware (where, for example, user hooks
could be installed directly into the scheduler)
and is less suited to today’s mainstream com-
puting systems.

Topics include thread-local storage, garbage col-
lection, mmap, breakpoints and ptrace, signal han-
dling, floating point, terminal handling, dynamic
linking, and atomic operations. We conclude with a
look at some tools (cparse, SWIG, FFIGEN) to help
in this area, and some recommendations for kernel
and library authors about how they can make life eas-
ier for users of non-C languages.

1 The challenge

Traditionally Lisp and Unix were very different cul-
tures. Unix vendors of the 80s produced worksta-
tions that, although expensive by PC standards, ac-
tually had a very attractive price/performance ratio.
Unix is based around a philosophy of multiple in-
dependent processes which communicate by sending

1



streams of bytes to each other - typically using sock-
ets, files or pipes.

Lisp companies, on the other hand, produced
fiendishly expensive single-user workstations with
Lisp-based operating systems and hardware support
for fast type and bounds checking. Because these
systems were single user, and the hardware protected
against most kinds of accidental damage, Lisp sys-
tems used to allow each task to see all the others: no
marshalling overhead, easy object sharing, no mem-
ory protection. They called their tasks ’processes’,
but in today’s terms they’re more like threads.

Unfortunately for Lisp machine vendors,
“fiendishly expensive” and “custom hardware”
could mean only one thing. The Lisp hardware
customers were mostly the AI companies: the
combined effect of Moore’s Law making general-
purpose hardware a lot faster, and the bottom falling
out of the AI market1, mostly killed them.

Thanks to the the ongoing march of technology, in
this decade we can put a fully functional Lisp onto
a standard hardware platform, and it’s not even the
biggest process - Mozilla or OpenOffice.org com-
fortably exceed the resource requirements for Unix-
based Lisps. Stock hardware has the CPU power,
and standard OSes such as Linux can – with a small
amount of forcing – make good software platforms
for a Lisp.

Steel Bank Common Lisp (SBCL) is a native
code Common Lisp environment that runs on a num-
ber of Unix platforms. It started life as a fork from
CMU Common Lisp, which was originally part of
the Spice project at CMU - so its lineage (and some
of its code) can be traced back for decades. Over the
course of the last nine months we added support for
Linux kernel threads to SBCL: in this paper we look

1Comparison with the dot-com bust is left as an exercise for
the reader

generally at the places where we have to do unusual
things for Unix, but with especial emphasis on fea-
tures we need for threads.

2 The language

Why Lisp, anyway? If you ask ten different Lisp pro-
grammers you’ll get ten different answers, but some
of the common traits are

• Interactive : like interpreted BASICs of old,
Lisp implementations usually start up in a state
that expressions can be typed into them to be
executed immediately. This makes testing and
prototyping much faster. Note that, unlike in-
terpreted BASICs, any self-respecting Lisp also
integrates a compiler into this environment.

• Extensible : the parentheses that plague so
many Lisp newbies are actually a feature. Be-
cause the printed syntax corresponds so closely
to the parse trees, macros make it easy to rewrite
source forms to extend the syntax of the lan-
guage in exciting ways. This eases the cre-
ation of domain-specific languages, so making
bottom-up programming a lot more fun.

• Multiparadigm : flexible syntax has meant
that Lisp has often been used by language re-
searchers when experimenting with new lan-
guage paradigms. Out of the box, Common
Lisp has support for programming in impera-
tive, functional, OO style, or some combination
of these styles. Nor is it hard to write, for exam-
ple, a Prolog interpreter in Lisp, if the problem
is best expressed in declarative style, or to add
support for lazy evaluation.

• Standard : Common Lisp was standardised by
ANSI in 1994 (making it the first ANSI stan-

2



dard object-orientated language, incidentally).
The standard was mostly a formalisation of
what existing Lisps are doing, so tends to be
pragmatic instead of idealistic.

2.1 Multiprocessing in Lisp

The Common Lisp standard does not include a
threading interface. Although the Lisp hardware sys-
tems of old had Lisp functions to inspect and manip-
ulate multiple tasks, other Lisp implementations of
the day were running on Unix or on microcomput-
ers, so didn’t usually support threading and would
not have voted for a change that required them to.
Regardless, the interface has since become some-
thing of a de facto standard for Lisps that did sup-
port threads, usually using userland threads with a
scheduler written in Lisp. However, it makes some
assumptions about the thread implementation that
make it a poor fit for kernel threads.

For example, without-interrupts is a macro that
wraps around code that must be executed without in-
terruption. On a Lisp machine, it really does turn in-
terrupts off. On Unix, it masks signals. This means
that the scheduler won’t run for the duration, so Lisp
code often called this to disable multitasking while
doing some operation that must be atomic. Need-
less to say, this is slow and difficult to arrange when
the kernel is doing the scheduling - and bad news for
scalability anyway.

process-wait is another problematic function: it
takes a predicate function as a parameter, and stops
the current process until the predicate returns true.
With a Lisp-based scheduler this is pretty simple to
implement, but in an OS scheduler, we’re going to
have to call the predicate every time we switch to
this process, then switch away again if it’s false. Al-
though we could reduce the system load by adding a

delay, this is still not a sensible use of cycles.

The problem is not that this function exists - after
all, sometimes you need to do this - the problem is
that there are no other functions in the standard inter-
face to make a thread wait for an event, so people end
up writing their own queue implementations on top
of this. If we provided - and encouraged people to
use - a queue implementation that didn’t do all these
extra context switches to processes that we should
already know aren’t ready to run, things would go
much more smoothly.

Given these problems, and with the intention of
creating an interface that looks a bit more familiar to
today’s programmers, we mostly ignored the Lispm
interface. We’re calling our threads threads, not pro-
cesses. Threads are identified by ids, and we have
functions like make-thread, current-thread-id and
destroy-thread to manipulate them.

It’s likely that a Lispm-like compatibility layer
will be added to ease porting from other Lisps, but
even in that layer it’s unlikely that we’ll ever imple-
ment without-interrupts.

3 The platform

Linux: “because it’s there”. Our interest is in creat-
ing a free Lisp development environment, so a pro-
prietary OS would be a non-starter. The alternative,
to implement an OS from scratch, would be a seri-
ously mammoth task, and to implement from scratch
with the same attention to performance and scalabil-
ity as has been lavished on Linux, would probably
take as long as Linux did. Why reinvent the wheel
when there’s a perfectly good antigravity belt there
for the taking?

In this section, we look at some of the differences
between SBCL and “normal” Unix programs.

3



3.1 Calling convention

In C, functions accept a fixed number of arguments,
each of a fixed type. A limited degree of support
for variable numbers of arguments is available with
stdarg. There is a single return value.

In Lisp, we can (in general) pass any type of ob-
ject to any function, and additionally we have “key-
word”, “optional” and “rest” arguments2 , and mul-
tiple return values. It’s somewhere between diffi-
cult and impossible to shoehorn all of this into a
C-compatible calling convention, and SBCL doesn’t
even try. Calls to C functions therefore involve a glue
layer which translates from one argument passing
convention to the other, so are probably best avoided
in time-critical inner loops.

3.2 Preprocessing

Even if we did use C calling convention, we’d still
have a problem where parts of a C language API are
specified as preprocessor macros. To inline C code
into our Lisp functions would involve doing things
to gcc that rms would really not be quite happy with.
So, we have to write wrapper functions for these
macros, usually in C, and suffer the additional func-
tion call overhead.

In the particular context of adding thread support,
this presents a particular problem for thread-local
data access. As we’ll see later, Lisp needs a lot of
thread-local data, and having to do a call into C on
every access is a good deal slower than we’d really
like it to be.

2An optional argument is declared with a name in the param-
eter list, which is bound to a default value if unsupplied. A rest
argument is a name to which a list of all the unnamed arguments
is bound.

3.3 Signal handling and debugging

It is unusual for a Unix program to continue running
for very long after receiving SIGSEGV, SIGBUS, or
SIGTRAP. It’s not unexpected for it to stop after re-
ceiving SIGFPE (e.g. on a divide-by-zero error).

However, dropping back to the shell prompt is
usually undesirable in an interactive system: post-
mortem debugging is generally far less productive
than in-process debugging where all the state (in-
cluding open files, network connections, etc) is avail-
able, and besides we’d rather not kill off any of the
other threads that are running unrelated jobs. So we
really want to catch these signals and run error han-
dlers that can fix the problem and continue.

(Indeed, sometimes we intentionally ask for these
signals in normal operation. For example, the
garbage collector tracks writes to old pages by map-
ping them read-only and catching SIGSEGV when
they’re written to)

To diagnose and recover effectively we need
more than just the signal number. We declare all
our signal handlers using sigaction() with the
SA SIGACTION flag. This causes our handler to
be called with three arguments: the second argument
is a siginfo structure, and the third is usually a
ucontext structure 3 containing a wealth of infor-
mation including the program counter at the time of
signalling, the register contents, and other per-signal
information - for example, in the case of a SIGSEGV,
the faulting address. Much of this information is
used internally in SBCL or passed onto the debug-
ger.

Libraries that install signal handlers are, therefore,
bad news. Even if their handlers still work in our

3This holds on Solaris, Tru64, FreeBSD, and all Linux archi-
tectures we have ports for, other than the SPARC. I don’t know
why it has to be different

4



runtime, and even if they then call the previously in-
stalled handler instead of bailing out, they rarely do
it properly with correct siginfo and ucontext - and al-
most certainly don’t think to check whether we were
using sigaltstack() to get an alternate signal
stack. So, at best our handlers will not know why
they’re running, and more likely we’ll get a core
dump with fairly meaningless backtrace, or an infi-
nite loop of segmentation faults.

SBCL users have seen this problem in practice
with SDL, for example. It installs a SIGSEGV han-
dler, presumably to free up resources and return the
console to text mode if necessary. This is bad, be-
cause we use SIGSEGV for our page write protec-
tion. When SDL quits it restores the old handler, but
it doesn’t restore it with the SA SIGINFO flag, so it
still loses4

3.3.1 Introspection

SBCL includes an interactive compiler - in fact, there
is no interpreter; everything that is evaluated is com-
piled first. When the user asks to evaluate a function,
we compile it directly into memory, and then jump
to it. This presents cache consistency issues some-
what like those for self-modifying code, though hap-
pily far more tractable as we are very unlikely to be
executing in the same page as we’re modifying. Al-
though I am aware of no standard function to ‘flush
the icache’, it’s usually possible somehow - or, on
x86, happens automatically.

There are other circumstances in which we write
to code pages, that need similar treatment: for exam-
ple, when setting breakpoints, or during GC when
moving functions from one place to another. It

4This was determined about a year ago by an SBCL user, and
I believe was reported as a bug to SDL maintainers. It may well
have been changed since

should be noted that hitting a breakpoint causes us
to receive SIGTRAP in our own process - this works
pretty well in practice, but tends to confuse gdb if
you’re also running under gdb. Ideally it would be
able to tell when a SIGTRAP was due to a break-
point it had inserted and when it should instead be
delivered to the process it’s attached to.

Libraries that call exit() are bad news in any
circumstances.

4 Threading

In this section we look at the specific issues we en-
countered adding thread support to SBCL.

4.1 Thread creation, destruction, account-
ing

In Linux 2.4, the POSIX threads interface is imple-
mented by LinuxThreads. Writing to this interface
would make us compatible with all platforms that
offer POSIX threads, if it were possible. There’s a
problem, though: in kernel versions up to and in-
cluding 2.4 (it gets a lot better in 2.6) there’s a pretty
poor match between the kernel’s thread model and
the requirements of the POSIX thread standard. This
requires LinuxThreads to do some pretty offensive
things.

The most important problem is signal handling.
POSIX threading has some fairly strict requirements
about which thread(s) a signal is delivered to, which
in LinuxThreads are implemented by having one
thread catch a signal and resignal it to another. As
we’ve seen already, though, resignalling is a no-no
when we’re using three-argument signal handlers.

We decided instead to use the kernel threads di-
rectly. After all, POSIX specifies interfaces for C,

5



not for high-level languages. So, we call clone() it-
self, or at least the small C library wrapper for it that
allocates a stack for the child.

We’re not directly using NPTL. This is partly be-
cause we can’t, as so much of it is defined as gcc or
binutils extensions and we’re not using gcc or binu-
tils, and it’s partly because POSIX semantics are not
a requirement for us. We should emphasise, though,
that the work done on the kernel for NPTL is impor-
tant to us: by using kernel threads we benefit directly
from the speed and scalability optimisation they do,
and when 2.6 is available with new kernel facilities
like futexes, we’ll use them too.

4.1.1 Garbage Collection

Garbage collection works by periodically pausing
the program, then, starting with the ’root set’ - the
variables that we know are in use, such as the CPU
registers and the local variables on the stack - follow-
ing all the references from those variables to other
objects, and copying everything we find into some
new area. When we run out of objects, anything left
uncopied is evidently no longer needed and can be
deallocated.5

This is going to be simpler if we know that noth-
ing is changing the data behind our backs, so we have
to stop the other threads while it happens. To make
life slightly simpler, we dedicate the parent thread
of SBCL exclusively to cleaning up after its chil-
dren: usually it sits in a loop calling waitpid()
and reaping children. When signalled by a child to
perform GC, it uses ptrace() to attach and sus-
pend to each of the children, and when they’re all
safely stopped (we’re notified by waitpid() for
each child) we can do GC. The PTRACE PEEKUSR
call is used to get the child’s registers to add to the

5This is an oversimplification

root set.

There is a wrinkle. Sometimes a thread may set its
’pseudo-atomic’ flag: this says that it’s in the middle
of some operation that shouldn’t be interrupted by
signals or garbage collection - for example, it has
allocated but not yet initialised memory for a new
object. After we stop the world for GC, we have to
check the flag for each thread and resume any that
were in pseudo-atomic, letting them run until they
reach a safe suspension point.

4.2 Special variables, thread-local storage

Common Lisp has a feature called ”special vari-
ables”. A special is declared using defvar or def-
parameter, and behaves almost but not quite like a
global variable. If we write

(defvar *foo* 1)

then *foo* is set to 1 in all parts of the program
– except that we can temporarily rebind it to some
other value

(let ((*foo* 2))
(some computation))

and during the body of the let form it will tem-
porarily be set to 2. Even if the body calls some other
function, *foo* will still be 2 in that other function.
When the let form finishes executing it reverts to
the value 1. Computer science graduates will recog-
nise this as dynamic scoping; Perl programmers will
recognise it as a ’local’ variable (as opposed to the
more normal ’my’ variables).

But what do we do if two threads refer to *foo*
at once, and one or both of them has rebound it? If
it only has a single value at any one time this could

6



get really messy: are rebindings in A visible in B?
We’d rather they weren’t: a change to a bound spe-
cial variable should affect only the thread it happens
in.

So we need some form of thread-local storage, and
we need it to be at least reasonably fast. All of mem-
ory is the same in both threads, and the only thing
that differs between threads is the register contents.
We have a few options:

We could dedicate a register to the thread storage
base. On an x86 we don’t have a lot of registers avail-
able, though. Tying a register up permanently for this
purpose would make code run more slowly, and im-
plementing this changes would also need quite a lot
of work on the compiler (which already has uses for
most of them wired in).

Each thread has its own stack: if we can identify
the current thread from the stack pointer, we can use
that as an index into a table of thread-local values.
But we only have registers (%esp, %ebp) for the
bottom of the stack - which keeps moving up and
down - and for the current frame. Either we’d have to
push the thread base address onto the stack on every
function call, or we could make sure that each stack
is aligned on, say, a 2Mb boundary, and then find
the top of the stack just by masking the stack pointer
appropriately. But 2Mb is a lot of stack if we want to
run lots and lots of threads.

Or we could use a segment register. Linux uses
the 32 bit ’flat’ mode of the 386, so segment regis-
ters don’t see as much use as they did back in the
”good old” MSDOS days - usually they’re all set to
0, in fact - but they’re still available. We use the %fs
register, having been warned that %gs would be used
by NPTL.

Setting up segment registers in flat mode is a lit-
tle more complicated than it used to be in real mode.
Rather than being just an offset to the memory area

we want to access, the %fs register is now a pointer
into an entry in a descriptor table, which stores var-
ious attributes of the memory area: size, location,
permissions etc. This can be a Local Descriptor Ta-
ble or the Global Descriptor table. Manipulating the
values in a descriptor table is a root-only operation,
but the kernel people in their infinite foresight have
created a modify ldt() system call (mostly for
the use of Wine, which needs to fake %fs and %gs
convincingly for Windows apps to run) that we can
use.

There is a downside to using the LDT: chiefly that
it limits us to 8192 entries and hence 8192 threads.
As part of the 2.6/NPTL work, Ingo Molnar in-
troduced a user-specified slot in the GDT (again,
primarily for Wine to use) which is reloaded per-
process in the kernel context switch. When 2.6 is
available more widely, we’ll probably switch to us-
ing this, although it should be noted that we currently
have fixed 2Mb stacks, so until we fix that to allow
variable stack sizes we can’t get nearly that many
threads anyway.

The eventual upshot is that we can set up a block
of memory for each thread, assign an offset for every
variable that gets dynamically bound, then write e.g.
%fs:20 to access the thread-local value for the vari-
able at offset 20. Because %fs points to a different
place in each thread, the value that comes back will
be different in each thread.

4.3 Locks

Most of the complexity of thread programming is
in correctly arbitrating access to shared resources or
portions of code that aren’t safe to be run by multiple
threads at once. In fact the latter is the same thing as
the former, given that the reason the code isn’t safe
to run more than once is that it accesses shared re-

7



sources. So, any threaded environment must offer
some kind of locking constructs.

Spinlocks are built on top of lock cmpxchg.
They’re not directly available to end-users - though
note that this is Lisp so it’s intentionally not impossi-
ble to call internal functions if you know what you’re
doing. User-available locks have queues attached to
them: a waiting thread puts itself on a queue, then
sleeps by calling sigtimedwait() and can be
woken later by the lock holder when it relinquishes
the lock. When 2.6 is available we’ll provide futex-
based locks which should be a little more efficient
than this, and allow fewer possibilities for missed
signals.

We provide ordinary mutexes (one thread may
hold a mutex, others have to wait). These are not
recursive: if you own a lock and you try to get it
again, you will hang potentially forever, because it’s
not free - if you’re attempting to get a lock you al-
ready have, that usually indicates a problem. Re-
cursive locks are also available for situations where
they’re necessary. If you attempt to get a recursive
lock and you have it already, you just carry on hold-
ing it.

We also have condition variables, similar to those
in the Posix thread model and in Java. These pro-
vide a race-free means for a thread that holds a lock
to release it and go to sleep on a queue until woken
by some other thread. When it’s woken, it’s guaran-
teed to reacquire the lock before being allowed to do
anything else.

Timeouts are important: we usually don’t want to
lock indefinitely, and there are other situations where
we want to abort an operation if it takes too long as
well. For example in a web server, there’s usually
little point in serving a response if it’s taken more
than about a minute to compute, because the user
will have gone elsewhere. Timeouts are trivial to im-

plement in a native threads system: all we need do
is call alarm(), and install a SIGALRM handler that
signals a Lisp condition (similar to an exception in
languages like Java). Then we can handle the time-
out at whatever point is appropriate using standard
Lisp facilities.

5 Future work

There is more work to be done on the threading im-
plementation to make it really robust. This includes
resizing the TLS area when we run out of room in it,
adding parameters to control the stack sizes, and so
forth.

Larger projects for the thread support include the
ability to benefit from many of the features intro-
duced in 2.6 by and for NPTL, such as futexes and
the per-process GDT slots, and ports to non-x86 ar-
chitectures (which can use an ordinary register for
TLS instead of needing a segment selector) and non-
Linux OSes. Andreas Fuchs has already reported
some initial success on a FreeBSD port using their
rfork thread call.

Other SBCL projects in current development in-
clude Unicode support, MacOS X and Windows
ports, and changes to take advantage of 64 bit ad-
dress spaces.

6 Existing tools for FFI

Creating Lisp language bindings for a library is to
some extent very easy. Given a function name
and a shared library, we just use dlopen() and
dlsym(), and call it.

The tedious part is in knowing what to call it with.
Some tools exist that help with digging constants and

8



structure layouts out of header files, but it’s not a
completely automatic process.

• SB-GROVEL is part of SBCL. It takes a con-
figuration file listing the constants and struc-
ture/union names/fields of interest, then writes,
compiles and runs a short C program that uses
sizeof and offsetof to determine the appropriate
numbers, and writes them out as a Lisp source
file. It has rough edges still, and obviously
doesn’t help with API calls or variables that are
only implemented as preprocessor macros (e.g.
errno)

• cparse 6 does a moderately good but not perfect
job of parsing C headers. Unfortunately, any-
thing less than gcc-style perfection is probably
insufficient to parse GNU Libc headers.

• FFIGEN 7 is a patched gcc that can be used to
build a dbm file of library calls in a format that
makes it easy to create language bindings to
them. OpenMCL (another free Lisp compiler,
for PPC systems only) uses this and it’s claimed
to be pretty slick. As it’s based on gcc it’s not
trivial to build, though, and someone will need
to keep updating it against new versions of gcc
as they’re released. Presently only works with
OpenMCL.

• SWIG, the Simplified Wrapper and Interface
Generator, takes annotated C/C++ header files
as its input specification, and can generate bind-
ings for several high-level languages. It’s re-
ported that it now has s-expressions as an out-
put format, and experimental support for trans-
forming these to UFFI 8 declarations. If it be-

6http://bricoworks.com/ moore/cparse/
7http://openmcl.clozure.com/Doc/interface-translation.html
8UFFI is a portable CL package for foreign language inter-

faces.

came commonplace for library authors to anno-
tate their header files appropriately, this could
be a very powerful tool.

7 Recommendations

Today’s Unix-like systems are definitely easier to do
interesting things with than those of a few years ago.
It’s often been possible for a long time to get the
fault address from a SIGSEGV, but looking at old
CMUCL code it’s apparent that the exact method
for doing this used to vary widely between different
Unices, and often involved looking in kernel source
to find the signal handler stack frame layout. These
days - except, as we noted, on Linux/SPARC9 - it’s a
pretty safe bet that SA SIGINFO and a ucontext
will do the trick.

However, the kernel/C library alone is no longer
the platform for useful programs - today program-
mers depend on a host of layered libraries, whether
toolkits such as GNOME or KDE, or smaller spe-
cial purpose libraries like cdparanoia. In a spirit of
continuous improvement, then, I’d like to close by
offering the following suggestions to library authors:

• When the usual interface to something involves
use of the preprocessor (e.g. errno or the
stat family of calls), provide and document
an alternative functional interface that can be
called with dlsym().

• Avoid mandating “convenience” features such
as installing signal handlers for cleanup or call-
ing exit() in error situations. You can’t antici-
pate what the user will or won’t find convenient,
so allow some way to disable these things.

9and MacOS 10.1, but happily they’ve fixed it in 10.2

9



• If you can avoid monopolising the event loop,
this is a good thing. Everyone wants to monop-
olise the event loop, and only one of the con-
tenders can win.

• For extra points, provide some machine-
readable file describing your exported functions
and data structures. This could be as simple
as running your header files through SWIG to
make sure it can parse them and output appro-
priate interfaces.

10


