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Abstract

We present the state of the art of the main component of text retrieval systems: the search
engine. We outline the main lines of research and issues involved. We survey the relevant
techniques in use today for text searching and explore the gap between theoretical and practical
algorithms. The main observation is that simpler ideas are better in practice.

In theory, The best theory is inspired by practice.
there is no difference between theory and practice. The best practice is inspired by theory.
In practice, there is. DonNALD E. KNUTH

JAN L.A. VAN DE SNEPSCHEUT

1 Introduction

Full text retrieval systems have become a popular way of providing support for text databases.
The full text model permits locating the occurrences of any word, sentence, or simply substring
in any document of the collection. Its main advantages, as compared to alternative text retrieval
models, are simplicity and efficiency. From the end-user point of view, full text searching of on-
line documents is appealing because valid query patterns are just any word or sentence of the
documents. In the past, alternatives to the full-text model, such as semantic indexing, had
received some attention. Nowadays, those alternatives are confined to very specific domains
while most text retrieval systems used in practice rely, in one way or another, on the full text
model.

The main component of a full text retrieval system is the text search engine. The task of this
engine is to retrieve the occurrences of query patterns in the text collection. Patterns can range
from simple words, phrases or strings to more sophisticated forms such as regular expressions.
The efficiency of the text search engine is usually crucial for the overall success of the database
System.

It is possible to build and maintain an index over the text, which is a data structure designed
to speed up searches. However, (i) indices take space, which may or may not be available;
(74) indices take time to build, so construction time must be amortized over many searches,
which outrules indexing for texts that will disappear soon such as on-line news; (ii7) indices
are relatively costly to maintain upon text updates, so they may not be useful for frequently
changing text such as in text editors; and (iv) the search without an index may be fast enough
for texts of several megabytes, depending on the application. For these reasons, we may find text
search systems that rely on sequential search (without index), indexed search, or a combination
of both.



In this chapter we review the main algorithmic techniques to implement a text search engine,
with or without indices. We will focus on the most recent and relevant techniques in practice,
although we will cover the main theoretical contributions to the problem and highlight the
tension between theoretically and practically appealing ideas. We will show how simpler ideas
work better in practice. As we do not attempt to fully cover all the existing developments, we
refer the interested reader to several books that cover the area in depth [31, 22, 58, 13, 71, 25, 34].

2 Basic Concepts

We start by defining some concepts. Let text be the data to be searched. This data may be
stored in one or more files, a fact that we disregard for simplicity. Text is not necessarily natural
language, but just a sequence (or string) of characters. In addition, some pieces of the text might
not be retrievable (for example, if a text contains images or non-searchable data), or we may
want to search different pieces of text in different ways. For example, in GenBank registers
one finds DNA streams mixed with English descriptions and metadata, and retrieval over those
parts of the database are very different processes.

2.1 The Full Text Model

The text database can be viewed as a very long string of data. Often text has little or no
structure, and in many applications we wish to process the text without concern for the structure.
This is typically the case of biological or multimedia sequences. As oriental languages such as
Chinese, Japanese, and Korean Kanji are difficult to segment into words, texts written in those
languages are usually regarded as a very long string too. For this view of the text, we usually
want to retrieve any text substring.

Natural language texts written in Western languages can be regarded as a sequence of words.
Each word is a maximal string not including any symbol from a special separator set (such as a
blank space). Examples of such collections are dictionaries, legal cases, articles on wire services,
scientific papers, etc. In this case we might want to retrieve only words or phrases, or also any
text substring.

Optionally, a text may have a structure. The text can be logically divided into documents,
and each document into fields. Alternatively, the text may have a complex hierarchical or graph
structure. This is the case of text databases structured using XML, SGML or HTML, where
we might also query the structure of the text. In this chapter we will ignore text structure and
regard it as a sequence of characters or words.

2.2 Notation

We introduce some notation now. A string S of length |S| = s will be written as Sy_5. Its
i-th character will be S; and a string formed by characters i to j of S will be written S; ;.
Characters are drawn from an alphabet X of size o > 1. String S is a prefiz of SS’, a suffiz of
S’S, and a substring of S’SS”, where S’ and S” are arbitrary strings.

The most basic problem in text searching is to find all the positions where a pattern P =
Py, occurs in a text T =T} ,, m < n. In some cases one is satisfied with any occurrence of
P in T, but in this chapter we will focus on the most common case where one wants them all.
Formally, the search problem can be written as retrieving {|X|, T = XPY}. More generally,
pattern P will denote a language, L(P) C ¥*, and our aim will be to find the text occurrences
of any string in that language, formally {|X|, T = XP'Y, P’ € L(P)}.



We will be interested both in worst-case and average-case time and space complexities. We
remind that the worst case is the maximum time/space the algorithm may need over every
possible text and pattern, while the average case is the mean time over all possible texts and
patterns. For average case results we assume that pattern and text characters are uniformly
and independently distributed over the o characters of the alphabet. This is usually not true,
but it is a reasonable model in practice.

We make heavy use of bit manipulations inside computer words, so we need some further
notation for these. Computer words have w bits (typically w = 32, 64 or 128), and sequence
of bits in a computer word are written right to left. The operations to manipulate them are
inherited from C language: “|” is the bitwise “or”, “&” is the bitwise “and”, “<<” shifts all the
bits to the left (that is, the bit at position ¢ moves to position i + 1) and enters a zero at the
rightmost position, “>>" shifts to the right and enters a zero at the leftmost position (unsigned
semantics), “A” is the bitwise exclusive or (xor), and “~” complements all the bits. We can also
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perform arithmetic operations on the computer words such as “+” and “—7.

2.3 Text Suffixes

Observe that any occurrence of P in T is a prefix of a suffix of T' (this suffix is PY or P'Y in
our formal definition). The concept of prefix and suffix plays a central role in text searching. In
particular, a model that has proven extremely useful, and that marries very well with the full
text model, is to consider the text as the set of its suffixes.

We assume that the text to be searched is a single string padded at its right end with a
special terminator character, denoted “$” and smaller than any other. A text suffix is simply a
suffix of T', that is, the sequence of characters starting at any position of the text and continuing
to the right. Given the terminator, all the text suffixes are different, and no one is a prefix of
any other. Moreover, there is a one-to-one correspondence between text positions ¢ and text
suffixes T; ...

Under this view, the search problem is to find all the text suffixes starting with P (or
P’ e L(P)).

2.4 Tries

Finally, let us introduce an extremely useful data structure for text searching. It is called a
trie, and is a data structure that stores a set of strings and permits determining in time O(|S|)
whether string S is in the set, no matter how many strings are stored in the trie. A trie on a set
of strings is a tree with one leaf per string and one internal node per different proper prefix of a
string. There is an edge labeled ¢ from every node representing prefix S to the node representing
prefix Sc. The root represents the empty string. Figure 1 (left) illustrates.

In order to search for S in the trie, we start at the root and follow edge S1, if it exists. If
we succeed, we follow edge Sz from the node we arrived at, and so on until either (i) we cannot
find the proper edge to follow, in which case S is not in the set, or (i7) we use all the characters
in S, and if the node arrived at stores a string, we have found S. Note that it is also easy to
determine whether S is a prefix of some string stored in the trie: We search for S and all the
subtree of the node arrived at contains the strings whose prefix is S.

We might add a special string terminator “$” to all the strings so as to ensure that no string
is a prefix of another in the set. In this case there is a one-to-one correspondence between trie
leaves and stored strings. To save some space, we usually put the leaves as soon as the string
prefix is unique. When the search arrives at such a leaf, the search process continues comparing
the search string against the string stored at the leaf. Figure 1 (right) illustrates.
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Figure 1: A trie over the strings "ada", "amanda", "amelie", "barbara" and "adalia". On
the left, basic formulation. On the right, the version used in practice.

3 Sequential Text Search

In this section we assume that no index on the text is available, so we have to scan all the text
in order to report the occurrences of P. We start with simple string patterns and later consider
more sophisticated searches.

To better understand the problem, let us consider which would be its naive solution. Consider
every possible initial position of an occurrence of P in T', that is, 1...n —m + 1. For each such
initial position i, compare P with T; ;+.,,—1. Report an occurrence whenever the two strings
match. The worst case complexity of this algorithm is O(mn). Its average case complexity,
however, is O(n), since on average we have to compare o/(c — 1) characters before two strings
mismatch. Our aim is to do better.

From a theoretical viewpoint, this problem is basically solved, except for very focused ques-
tions that still remain.

e The worst-case complexity is clearly €2(n) character inspections (for the exact constant see
[18]). This has been achieved by Knuth-Morris-Pratt (KMP) algorithm [41] using O(m)
space.

e The average-case complexity is ©(n log,(m)/m) [76]. This has been achieved by Backward
DAWG Matching (BDM) algorithm [21] using O(m) space. The algorithm can be made
worst-case optimal at the same time (e.g., TurboBDM and TurboRF variants [21]).

e Optimal worst-case algorithms with O(1) extra space exist (the first was [28]), while the
same problem is open for the average case.

If one turns attention to practical matters, however, the above algorithms are in several
aspects unsatisfactory. For example, in practice KMP is twice as slow as the naive search
algorithm, which can be programmed with three lines of code or so. BDM, on the other hand,
is rather complicated to implement and not so fast for many typical text searching scenarios.
For example, BDM is a good choice to search for patterns of length m = 100 on DNA text,
but when it comes to search for words and phrases (of length typically less than 30) in natural



language text, it is outperformed by far by a simple variant of Boyer-Moore due to Horspool
[36], which also can be coded in a few lines.

In this section we will consider two successful approaches to text searching. These are re-
sponsible for most of the relevant techniques in use today. In both approaches we will explore
the relation between theoretically and practically appealing algorithms, and we will show that
usually the best practical algorithms are simplified versions of their complex theoretical coun-
terparts. The first approach is the use of automata, which theoretical algorithms convert to
deterministic form while practical algorithms simulate in their simple and regular nondetermin-
istic form. The second approach is the use of filtering, where theoretical algorithms minimize
the number of character inspections at a considerable extra processing cost, while practical
algorithms use simpler criteria that inspect more characters but are faster in practice.

3.1 Automata

Consider pattern P = "abracadabra". Figure 2 shows a Nondeterministic Finite Automaton
(NFA) that recognizes the language ¥*P, that is, strings finishing with P. As it can be seen,
the automaton has a very regular structure.
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Figure 2: An NFA to search for "abracadabra". The initial state is marked with “)” and the
final state is double-circled.
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This NFA can be used for text searching as follows: feed it with the characters of T. Each
time it recognizes a word, it means that we have read a string in the set >* P, or which is the
same, we have found the pattern in the text. Then we can report every occurrence of P in T'.

Since the NFA has m + 1 states, its simulation over n text characters takes O(mn) time,
in the worst and average case. The reason is that, in principle, each NFA state can be active
or inactive and we have to update them all. This complexity is not appealing if we compare it
against the naive algorithm.

A clear option to reduce search time is to make the automaton deterministic (DFA). In this
case, there will be only one active state at the time, and processing the automaton over the text
will take O(n) search time. Figure 3 shows the DFA for the same pattern. As it can be seen,
its regularity has been lost. To the previous “forward” arrows, a number of “backward” arrows
have been added, which handle the case where the next text character is not the one we expect
to match P.

Figure 3: A DFA to search for "abracadabra". The initial state is marked with “)” and the
final state is double-circled. Unlabeled arrows stand for “any other character”.

A problem with deterministic automata is that they could, in principle, need exponential
time and space to be built, with respect to the original string. However, this is not the case



of regular expressions of the form ¥*P, whose deterministic automata need only O(mo) space
because there is a one-to-one correspondence between search states and prefixes of P. Hence
using a DFA gives us an O(mo + n) worst-case and average-case time algorithm.

As a matter of fact, the classical algorithm by Knuth, Morris and Pratt (KMP) [41] relies,
basically, on the deterministic version of the automaton. In order to reduce preprocessing time
and space usage to O(m) (and hence ensure worst-case optimality for the unlikely case mo > n),
KMP does not store the arrows of the automaton. Rather, for each state, it stores its “failure”
state: the largest numbered state reachable by backward arrows, minus one. Upon a failure
(that is, when the next text character is not the one we need to move forward in the DFA),
KMP goes to the failure state and tries again with the current text letter. If this fails, it moves
to the failure state of the failure state, and so on. At worst, this process finishes at the initial
state. The correctness of this procedure is clear if we consider that being at state ¢ is equivalent
of having matched P;_; against the current text suffix, and that the failure state for ¢ tells which
is the longest prefix of P;_; which is also a suffix of P;_;. Although a given text position can
be compared several times, overall we cannot do more than 2n text inspections, because each
time we re-compare a text character we move backward in the automaton, and we cannot move
forward more than n times (one per text character). Construction of the failure function can
be done in O(m) time with a tricky algorithm, which gives the optimal worst-case complexity
O(m +n) = O(n) time.

As we have mentioned, despite the algorithmic beauty of KMP algorithm and its worst-case
guarantee, it turns out that in practice it is twice as slow as the naive algorithm. There is,
however, a much better alternative. We can use bit parallelism [9] to directly simulate the NFA,
taking advantage of its regular structure.

Let us assume we represent the NFA of Figure 2 using the bits of a computer word. The
initial state 0 is always active, so we will not represent it. Hence we need m bits, and let us
assume by now that our computer word size, w bits, is large enough to hold the m bits, that is,
m < w. The sequence of m bits will be called a bit mask.

Let us preprocess P so as to build a table B of bit masks, indexed by the alphabet X. The
i-th bit of Blc] will be 1 if and only if P, = ¢. Let us assume bit mask D stores the active and
inactive states of the NFA, so the i-th bit of D tells whether state 7 is active or not. Initially D
will have all its bits in zero.

There are two types of arrows in the NFA. Forward arrows move from state ¢ to i+ 1, as long
as the current text character matches P;. The self-loop at the initial state matches any character
and keeps state 0 always active. Hence, using C language notation to operate bit masks, it turns
out that D can be updated upon reading text character ¢ with the following simple formula

D — ((D<<1)]|1) & B .

The shift-left operation simulates the forward arrows. The “1” that is or-ed stands for the
initial state, which is always sending active bits to state 1. The “and” operation permits state
activations to move from one state to the next only if the current text character matches the
corresponding pattern position. After each update of D, we must check whether state m is
active, that is,

D& (1<<(m—1)) !'= 0,

and in this case we report an occurrence of P.
This algorithm, by Baeza-Yates and Gonnet [9], is called Shift-And. By using all the bits in
complemented form we get the faster Shift-Or [9]. The update formula of Shift-Or is

D «— (D<<1)]| B[]



ShiftOr(Ty. ., Pi.m)

for ce ¥ do Bl¢] — (1 <<m)—1
for je1...mdo Blp;] <« Blpj] & ~(1<<(j—1))
D — (1<<m)—-1
foriel...ndo
D «— (D <<1)| B[t
ifD&(1<<(m—-1)) =0
then P occurs at T;_n41..4

Figure 4: Shift-Or algorithm.

Preprocessing of P needs O(m + o) time and O(o) space. The text scanning phase is O(n).
Hence we get a very simple algorithm that is O(c +m + n) time and O(c) space in the worst
and average case. More important, Shift-Or is faster than the naive algorithm and can be coded
in a few lines. Figure 4 gives its pseudocode.

For patterns exceeding the computer word size (m > w), a multi-word implementation can
be considered. Hence we will have to update [m/w]| computer words per text character and
the worst case search time will be O(m + (0 + n)[m/w]). In practice, since the probability
of activating a state larger than w is minimal (1/0"), it is advisable to just search for P _,,
using the basic algorithm and compare P, 1. ., directly against the text when P _,, matches.
Verifications add n/c® x O(1) extra time, so the average time remains O(c + m + n).

3.2 Filtering

The previous algorithms try to do their best under the assumption that one has to inspect every
text character. In the worst case one cannot do better. However, on average, one can discard
large text areas without actually inspecting all their characters. This concept is called filtering
and was invented by Boyer and Moore [15], only a few years later than KMP (but they were
published the same year).

A key concept in filtering is that of a text window, which is any range of text positions of the
form i...7 4+ m — 1. The search problem is that of determining which text windows match P.
Filtering algorithms slide the window left to right on the text. At each position, they inspect
some text characters in the window and collect enough information so as to determine whether
there is a match or not in the current window. Then, they shift the window to a new position.
Note that the naive algorithm can be seen as a filtering algorithm that compares P and the text
window left to right, and always shifts by one position.

The original idea of Boyer-Moore (BM) algorithms is to compare P and the text window
right to left. Upon a match or mismatch, they make use of the information collected in the
comparison of the current window so as to shift it by at least one character. The original
Boyer-Moore algorithms used the following rules to shift the window as much as possible:

e If we have read suffix s from the window and this has matched the same suffix of P, then
we can shift the window until s (in the text) aligns with the last occurrence of s in Py 1.

If there is no such occurrence, then we must align the longest suffix of s that is also a prefix
of P.



e If we have read characters from the window and the mismatch has occurred at a character
¢, then we can shift the window until that position is aligned to a ¢ in P.

In fact, the original BM algorithm precomputes the necessary data to implement only the
last heuristic (the first was introduce in the KMP paper), and at each moment it uses the one
giving the largest shift. Although in the worst case the algorithm is still O(mn), on average it
is O(n/min(m,o)). This was the first algorithm that did not compare all the text characters.
The algorithm was later extended to make it O(n) in the worst case [17].

In practice, the algorithm was rather complicated to implement, not to mention if one has
to ensure linear worst-case complexity. A practical improvement was obtained by noting that,
for large enough alphabets, the second heuristic usually gave good enough shifts (the original
idea). Hence computing two shifts to pick the largest was not worth the cost. The resulting
algorithm, called Simplified BM, is simpler than BM and competitive.

However, even simpler and faster is Horspool algorithm [36]. Pattern and text window are
compared in any order, even left to right (this can be done using a special-purpose machine
instruction that compares chunks of memory). If they are equal, the occurrence is reported.
In any case, the last window character is used to determine the shift. For this sake, a table d
is built so that d[c] is the distance from the last occurrence of ¢ in P;_,,—1 to m. Hence, the
window starting at text position i can be shifted by d[T;1,,—1]. Figure 5 illustrates.

text window
‘ eda, T
I I
mismatch here d'a]=3
d'b]=2
.abracadabra P dci=s
| | d'd]=4
shit  abracadabra drj=1
| | d*] =11

T last 'a’ in’abracadabr’

Figure 5: Example of Horspool algorithm over a window terminating in "eda". In the example
we assume that P and the window are compared right to left.

Preprocessing requires O(m + o) time and O(o) space, while the average search time is
still O(n/min(m,o)). The algorithm fits in less than ten lines of code in most programming
languages. A close variant of this algorithm is due to Sunday [62], which uses the text position
following the window instead of the last window position. This makes the search time closer to
n/(m + 1) instead of Horspool’s n/m, and is in practice faster than Horspool.

However, if one takes into account that with probability (¢ — 1)/o even the first comparison
in the window fails, it is advisable to implement a so-called skip loop. This is a pre-filtering
phase where the last window character, ¢, is examined, and if F,,, = ¢ then we enter the usual
window processing code. Otherwise, the window is shifted by d[¢]. This not only makes Horspool
algorithm much faster (because its processing over most windows is minimal), but also makes
it superior to Sunday algorithm, since Horspool examines just one text character from most
windows, while Sunday examines at least two. GNU Grep (www.gnu.org) and Wu and Manber’s
Agrep [72] use Horspool algorithm in most cases, as it is usually the fastest choice in practice.
Figure 6 gives its pseudocode.

BM algorithms are not average-optimal (that is, O(nlog,(m)/m)). This is especially no-
ticeable when o is small compared to m. For example, on DNA, BM algorithms do not shift



Horspool(T} ., Pi.m)

for c€ ¥ do d[c] — m
forjel..m—1dodpj] «— m—j
i «— 0
while 7 + m < n do
while i +m <n A tiyym # pmdoi — i+ dtirm]
if P11 = Tig1ivm—
then P occurs at Ti41. itm
i — i+ dtiim]

Figure 6: Horspool algorithm with skip loop included.

windows by more than 4 positions on average, no matter how large is m.

One way to circumvent this weakness is to artificially enlarge the alphabet. This folklore idea
has been reinvented several times, see for example [7, 40, 64]. Say that, instead of considering
just the last window character to determine the shift, we read the last ¢ characters (that is, the
last window ¢g-gram). We preprocess P so that, for each possible g-gram, we record its smallest
distance to the end of the pattern. Then, we use Horspool as usual. Note that we pay O(q)
character inspections to read a g-gram.

The search time of this algorithm is O(c?+m+qn/ min(m, c?)), so the optimum is ¢ = log, m
and this yields the average-optimal O(m + nlog,(m)/m). This is the technique used in Agrep
for long patterns. In practice, depending on the architecture, one may take advantage from the
fact that the computer word usually can hold a ¢-gram, and read ¢-grams in a single machine
instruction, so as to get O(n/m) search time.

3.3 Filtering Using Automata

Another way to see why BM is not average-optimal is that it shifts the window too soon, that is,
as soon as it knows that it can be shifted. Since this occurs after O(1) comparisons, the pattern
is shifted so that it aligns correctly with O(1) window characters, and this occurs for a shift of
length O(o). Perhaps a bit counterintuitively, one should wait a bit more.

A very elegant algorithm, which was the first in achieving average optimality (and, with
some modifications, worst-case optimality at the same time) is Backward DAWG Matching
(BDM) [21], by Crochemore et al. This algorithm combines the use of automata with filtering
techniques.

BDM preprocesses the reversed pattern P (that is, P read backwards) so as to build an
automaton that recognizes every suffix of P". This is called the suffix automaton of P". The
nondeterministic version of this automaton has a very regular structure (see Figure 7).

Figure 7: An NFA to recognize the suffixes of "abracadabra" reversed. The initial state is
marked with “(” and the final state is double-circled. Dashed lines correspond to e-transitions.



The deterministic version of this automaton has m + 1 states and m to 2m edges, and can
be built in O(m) time [21]. To achieve this, the automaton must be incomplete, that is, only
the arrows in the path from the initial to a final state are represented. However, the DFA does
not have a regular structure anymore. Figure 8 shows the deterministic suffix automaton for
our running example.
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Figure 8: A DFA to recognize the suffixes of "abracadabra" reversed. The initial state is marked
with “(” and the final states are double-circled. Missing transitions go to a (non drawn) sink
state.

Since the automaton is deterministic, there is only one active state at the time. Moreover,
since it is incomplete, it might be that at some point there is no active state anymore. We say
in this case that the automaton is dead. In the nondeterministic version, this corresponds to
having all states inactive. Note that, if we feed the suffix automaton with a string, at the end
it will be dead if and only if the string is not a substring of P".

The suffix automaton is used as follows. We scan the characters of the text window from
right to left and feed the automaton with the text characters, until either the automaton dies or
we read all the window. In the first case, the suffix S” we have read in the window (in reverse
order, that is, right to left) is not a substring of P, hence S is not a substring of P. This means
that no occurrence of P can contain S, and therefore we can shift the window right after the
first position of S. In the second case, we have read all the window, of length m, and this is
still a substring of P, so we have actually read P and can report it and shift the window by one
position.

Actually, the algorithm does better. Each time the suffix automaton reaches a final state
we record the window position we are reading. Since the automaton reached a final state, this
means that the suffix S” read is a suffix of P", hence S is a prefix of P. Once we have to shift
the window (in either case) we can shift it so as to align its beginning with the longest (that is,
last) prefix of P recognized in the window. Figure 9 illustrates.

text window last prefix seen
‘ eda T
! \

automaton dies J‘
abracadabra, P
! \

shift .abracadabra,
\ \

Figure 9: Example of BDM algorithm over a window terminating in "eda".

It is not hard to see that the probability of recognizing a substring of P becomes sufficiently
small as soon as we read O(log, m) characters, so we shift the window by m — O(log, m) after
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inspecting O(log, m) characters. Hence the algorithm is O(nlog,(m)/m) average time. In
order to make it O(n) worst case time, it is combined with a KMP machine that ensures that
no characters are retraversed. This, however, makes the algorithm slower in practice.

The reason why BDM has not gained much popularity in applications is that, on one hand,
its optimality becomes significant in practice only for long patterns and small alphabets, and
on the other hand, the construction of the DFA is rather complicated. However, there are
two practical developments that inherit from BDM ideas and are among the fastest practical
algorithms.

The first is Backward Nondeterministic DAWG Matching (BNDM) [57], by Navarro and
Raffinot. The idea is to use the same BDM algorithm, but this time simulating the NFA with
bit-parallelism instead of building the DFA. As can be seen in Figure 7, the structure of the
NFA is rather regular and easy to simulate.

We work directly on P instead of reversing it. Hence the i-th bit of our bit mask D will be
active whenever state ¢ — 1 in the NFA is active. We do not represent the initial state because it
is active only in the beginning, to recognize the uninteresting empty substring of P. We build
table B as before and initialize D = 111...1 (all 1’s). Hence, upon reading a new window
character ¢, we update D as

D «— D& B[]

and at this point we can check a couple of conditions: (1) if D = 0 then the automaton has
died; (2) if D & 1 = 1 then we have recognized a prefix of P. After this we prepare D for the
next window character by right-shifting:

D «— D>>1

BNDM is faster than BDM and actually the fastest algorithm for small alphabets and not
very short patterns (e.g., m > 10 on DNA and m > 30 on natural language). It is used in
Navarro’s Nrgrep [52]. Its weakness, however, is that for long patterns we have to update many
computer words to simulate it. This time the trick of updating only active computer words does
not work because the active states distribute uniformly over the NFA. Hence the only practical
choice is to search for P, and directly check potential occurrences. Figure 10 gives BNDM
pseudocode.

Another practical alternative is algorithm Backward Oracle Matching (BOM) [4], by Allauzen
et al., which replaces the suffix automaton by an oracle. The oracle is an automaton that
recognizes more than the suffixes of P". Therefore the algorithm makes shorter shifts. However,
the fact that the oracle is simpler to build and smaller makes BOM faster in practice than BDM,
and faster than BNDM for m > 2w or so.

Construction of the oracle for a string S is rather simple compared to the deterministic suffix
automaton. It reminds the construction of the failure transitions for KMP. S is processed left
to right and for each new character ¢ the path of failures is followed. At each step of the path,
a new transition from the current node to the new final node, labeled by ¢, is inserted. In our
running example, the oracle is equal to the suffix automaton.

3.4 Searching for Multiple Patterns

Let us now assume that we want to search for a set of patterns P ... P,, all of length m for
simplicity of presentation. Several of the approaches designed to search for a single pattern
can be extended. In particular, automata and filtering approaches can be gracefully extended.
Bit-parallelism, on the other hand, is hardly useful because the resulting automata are rather
large, and hence even dividing the NFA update time by w is not enough.

11



BNDM(T.. ., Pi..m)

for c€ ¥ do Bjc] 0
for j€1...mdo Blp;] <« Blpj] | (1<<(j—1))
i «— 0
while 7 + m < n do
D — (1<<m)—-1
J = m; p = m
while D # 0do
D «— D & Blti;]
J—J-1
ifD&1 # 0
then if j > 0
thenp «—
else P occurs at Ti11. i+m
D «— D>>1
1 «— 1+Dp

Figure 10: BNDM algorithm.

On the theoretical side, the worst case lower bound to the problem is still Q(n) and it can
be achieved with an automaton due to Aho and Corasick (AC) [2], using O(rm) preprocessing
time and space. The average case lower bound is Q(nlog,(rm)/m) [26] and it is achieved by
Set Backward DAWG Matching (SBDM) algorithm [5] based on the ideas of Blumer et al. [14],
which is simultaneously O(n) worst case time. Its preprocessing time and space is also O(rm).

Since bit-parallelism is outruled, theory and practice are not so far away in this case. Algo-
rithm AC, which is an extension of KMP, is not only worst-case optimal but also the best choice
when m is small or 7 is very large. The set of patterns is preprocessed so as to build a trie data
structure (Section 2.4) on it.

Next, the trie is augmented with failure links, which point from every prefix S to the node
representing the longest suffix of S that is also a prefix of some string in the set. The whole
data structure takes O(rm) space and can be easily built in O(rm) worst-case time.

Then the algorithm works by starting at the root of the trie and scanning text characters
one by one. If there is an edge labeled by the character read, we move down in the trie by that
edge. Otherwise we move by the failure link and try again until we can follow an edge or we are
at the trie root again. Each time we arrive at a leaf we report an occurrence.

Just like KMP can be seen as a space-efficient version of using a DFA that recognizes >* P, AC
can be seen as a space-efficient version of a DFA, of size O(rmo), that recognizes ¥*(Py|. .. |P,).

With respect to filtering algorithms, algorithm BM was extended by Commentz-Walter [19]
so as to build a trie on the set of reversed patterns, scan windows right to left while entering
the trie at the same time, and precomputing shifts for each node of the trie. Although this is an
elegant extension of the BM idea, the resulting algorithm is not competitive nowadays, neither
in theory nor in practice.

In practice, an idea that works extremely well is to extend Horspool algorithm. This time
using an alphabet of ¢g-grams is mandatory. The idea is that all the g-grams of all the patterns
are considered, so that one records the smallest distance between any occurrence of the ¢g-gram
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in any of the patterns, and the end of that pattern. The resulting algorithm (WM) [74], by
Wu and Manber, obtains average optimality by choosing g = log, (rm), and is a very attractive
choice, because of its simplicity and efficiency. It is implemented in Agrep. Several practical
considerations are made in order to efficiently handling large alphabets. WM is in practice the
fastest algorithm except when r is very large or o is small.

With respect to merging automata and filtering, the average-optimal SBDM algorithm is
an acceptable choice. It is based on the same idea of BDM, except that this time the suffix
automaton recognizes any suffix of any pattern. This automaton can be seen as the trie of the
patterns augmented with some extra edges that permit skipping pattern prefixes so as to go
down directly to any trie node.

However, algorithm Set Backward Oracle Matching (SBOM) [5] by Allauzen and Raffinot,
is simpler and faster. The idea is, again, to use an automaton that recognizes more than the
suffixes of the patterns. This benefits from simplicity and becomes faster than SBDM. The
construction of the oracle is very similar to that of the AC automaton and can be done in
O(rm) space and time. SBOM is the best algorithm for small o or very large r.

3.5 Searching for Complex Patterns

A more sophisticated form of searching permits patterns contain not only simple characters,
but also “wild cards” of different types, such as (i) classes of characters like " [abc]" to match
"a", "b" or "c"; (ii) optional characters or classes like "a?", where "a" may appear or not;
and (7i7) repeatable characters or classes like "a*x", where "a" can appear zero or more times.
These can be used to express other well known wild cards such as "." (which matches any
character), "*" (which stands for ".*"), bounded length gaps (such as any string of length 2 to
4, which can be written as "...?7.7"), etc. This can go as far as permitting the pattern to be
any regular expression, that is, simple strings and any union, repetition and concatenation of
regular subexpressions.

As long as complex patterns are regular expressions, they can be converted into DFAs and
searched for in O(n) time [3]. This is theoretically appealing and, for sufficiently complex
patterns, the most practical choice. However, the preprocessing time and space requirements
can be exponential in m. Another alternative is to simulate the automata in nondeterministic
form, obtaining O(mn) search time [65].

There are, however, particular cases where specialized solutions exist. On the theoretical
side, there exist solutions to search for patterns with classes of characters and simple wild cards
[24, 60, 1]. Although theoretically interesting, these are not relevant in practice.

Bit-parallelism, on the other hand, yields extremely simple and efficient solutions to this
kind of problems. For example, classes of characters are easily handled in the Shift-And! and
BNDM algorithms. We only need to set the i-th bit Blc] for any ¢ € P;.

Optional and repeatable characters are a bit more complicated. Let us assume we want to
search for "ab*ra?cad*ab?ra". Figure 11 shows a NFA that searches for it.

We show how to simulate this NFA using Shift-And. Optional characters are marked in a
new bit mask O, whose i-th bit is 1 whenever P; is optional. Repeatable characters are marked
as optional in O and also in a table R[c|, whose i-th bit is 1 whenever character ¢ can be
repeated at pattern position i. In our example, O = 00101001010, R['¥'] = 00000000010 and
R['d’] = 00001000000; all the others are zero. We identify in O contiguous blocks of 1’s and mark
their initial and next-to-final positions in masks I and F. In our example, I = 00101001010 and
F = 01010010100. This complication is necessary because there could be contiguous optional

1Shift-Or is not faster this time, so we stick to the simpler to explain Shift-And.
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Figure 11: NFA that searches for "ab*xra?cad*ab?ra". The initial state is marked with “)” and
the final state is double-circled.

characters. The update formula for mask D after reading text character ¢, when we permit
optional and repeatable characters, is as follows

D « ((D<<1)|1)&B[d) | (D& Rl
E « D|F
D « D|(O&((~(E-1) N E)).

We do not attempt to explain all the details of this formula, but just to show that it is a
rather simple solution to a complex problem. It can be used for a Shift-And-like scanning of
the text or for a BNDM-like search. In this latter case, the window length should be that of
the shortest possible occurrence of P, and when we arrive at the beginning of the window, the
presence of an occurrence is not guaranteed. Rather, if we have found a pattern prefix at the
beginning of the window, we should verify whether an occurrence starts at that position. This
is done by simulating an automaton like that of Figure 11 with the initial self-loop removed.

In general, worst-case search time is O(n) for short patterns and O(nm/w) for longer ones
using bit-parallelism. A BNDM-like solution can be much faster depending on the sizes of the
classes and number of optional and repeatable characters. In practice, these solutions are simple
and practical, and they have been implemented in nrgrep [52].

Full regular expressions are more resistant to simple approaches. Several lines of attack have
been tried, both classical and bit-parallel, to obtain a tradeoff between search time and space.
Both have converged to O(mn/log s) time using O(s) space [50, 56].

Finally, efficient searching for multiple complex patterns is an open problem.

3.6 Approximate Pattern Matching

An extremely useful search option in text retrieval systems is to allow a limited number k,
of differences between pattern P and its occurrences in T'. The search problem varies widely
depending on what is considered a “difference”.

A simple choice is to assume that a difference is a substitution of one character by another.
Therefore, we are permitted to change up to k letters in P in order to match it in a text
position. This problem can be nicely solved using bit-parallelism, and it was in fact one of the
first extensions to Shift-Or, by Baeza-Yates and Gonnet, showing the potential of the approach
[9].

Let us reconsider the NFA of Figure 2. After having read text position j, state i is active
whenever P; ; matches Tj_; 1. ;. This time, let us consider that each state 7 is not simply active
or inactive, but that it remembers how many characters differ between Py ; and T;_; 1. ;. Every
time the counter at state m does not exceed k, we have an occurrence with at most & mismatches.

Our bit mask D holds m counters, ¢, ...cy, for each of which we have to reserve £ =
[logs(m + 1)] bits. We precompute a bit mask table of counters Blc|, whose i-th counter will
be 0 if P, = ¢ and 1 otherwise. Hence, after reading text character ¢ we can update D simply
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by doing
D «— (D<</{)+ B[]

which moves each counter to the next state and adds a new mismatch if appropriate. After each
new text character is processed, we report an occurrence whenever D >> (m — 1)¢ < k.

The resulting algorithm is called Shift-Add, and it takes O(n) worst-case time on short pat-
terns and O(mn log m) in general. Actually, with slightly more complex code, it is possible to use
only [logy(k 4 2)] bits for the counters, to obtain a worst-case complexity of O(mnlogk). This
technique [9] was later combined with BNDM by Navarro and Raffinot [57], and the resulting
algorithm is the fastest in practice.

A more interesting case, however, arises when differences can be not only character replace-
ments, but also insertions and deletions. This problem has received a lot of attention since the
sixties because of its multiple motivations in signal processing, computational biology, and text
retrieval. A full recent survey on the subject is [51].

The classical solution to this problem, by Sellers [61], is to fill a matrix C' of m + 1 rows and
n + 1 columns, such that C; ; is the minimum number of differences necessary to convert Pp__;
into a suffix of 77 ;. It turns out that C; g =4, Cp; = 0, and

Citrjrr = min(l+ G0, 14 Ciga 5, 0(F,Tj) + Ci )

where §(x,y) is 0 if x = y and 1 otherwise. This gives an O(mn) worst-case search algorithm,
which needs only O(m) space because only the previous column of C needs to be stored when
we move to the next text position. A simple twist by Ukkonen [66] obtains O(kn) average time.
These form the so-called “classical” algorithms for the problem, and they are still unparalleled
in flexibility when it comes to to solve more complex problems.

Let us quickly review the current state of the art regarding this problem from the theoretical
side:

e The worst-case complexity is €2(n), which can be achieved by using a DFA due to Ukkonen
[66] that searches for P allowing k differences. However, this requires exponential space
on m, as shown in the same paper.

e The worst-case complexity using space polynomial in m is unknown. The best algorithms
are O(kn) time, for example by Galil and Park [27].

e The average-case complexity is O((k + log, m)n/m), as proved by Chang and Marr [16].
In the same article an algorithm with that complexity is given, for k/m < 1/3 —O(c~1/?).

In practice, just like for simple string matching, the best current solutions are based either
on bit-parallelism or on filtering.

3.6.1 Automata

The NFA for approximate searching of our pattern "abracadabra" permitting k = 2 differences
can be seen in Figure 12. There are k + 1 rows, zero to k. Row zero is exactly as in Figure 2,
for exact searching. Row r represents having matched a prefix of P with r differences. Vertical
arrows insert a character in P (or skip a character in 7"). Diagonal arrows move either by X,
which replaces a character of P by that of T', or by ¢, which does not consume any text character,
so this deletes (skips) a character in P.

Although this automaton can be made deterministic, the DFA needs exponential space and
time to build, so this option is not practical. Simulation in nondeterministic form requires, in
principle, O(mkn) time, which is not attractive compared to the classical O(mn) solution.
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Figure 12: NFA that searches for "abracadabra" permitting up to 2 character insertions, dele-
tions and substitutions. The initial state is marked “)”. Unlabeled transitions move by ¥ U {e}.

Bit-parallelism, however, can be applied to solve this problem in various ways. The simplest
way, by Wu and Manber [73], is to extend Shift-And so as to simulate each automaton row
separately. Let us assume that bit mask R; simulates the i-th row of the NFA. Hence, upon
reading a new text character ¢, the R; values can be updated to R} using the following formula:

Ry — ((Ro<<1)|1)& B[
i1 = (R << & B[d) | Ri | (Ri<<1) | (Rj<<1) |1

which simulates all the different arrows in the NFA, as it can be easily verified. This solution
is simple and flexible and is implemented in Agrep and Nrgrep. On short patterns it is O(kn)
worst-case time, and O(k[m/w]|n) in general.

A faster algorithm, by Baeza-Yates and Navarro [11], cuts the NFA by diagonals rather than
by rows. The interesting property of this partitioning is that different diagonals do not depend
on the current value of each other (like row R; ; depends on row R;, which prevents computing
them in parallel). Hence all the diagonals can be packed in a single computer word. This yields
a worst-case time of O([km/w]n), which on short patterns is much faster than the simulation
by rows, and currently is the fastest bit-parallel solution for short patterns.

Bit-parallelism has been also used to simulate the processing of matrix C' instead of the NFA.
Consecutive values of C' differ only by +1, so each matrix column can be represented using 2m
bits. Myers [48] used this property to design an algorithm whose complexity is O([m/w|n) in
the worst case and O(km/w) on average. As this is an optimal speedup over the best classical
algorithms, it is unlikely that this complexity is improved by any other bit-parallel algorithm.
However, on short patterns, the diagonal-wise simulation of the NFA is around 15% faster.

3.6.2 Filtration

A simple folklore property of approximate searching is that if P is split into k4 1 pieces, then at
least one piece can appear unaltered inside any approximate occurrence of P, since k differences
cannot alter more than k pattern pieces. Then, multipattern search for the k 4+ 1 pieces of P
points out all the potential occurrences of P. All those candidate positions are verified with a
classical or bit-parallel algorithm.

The multipattern search takes time O(knlog,(m)/m) using an average-optimal algorithm.
The time for verifications stays negligible as long as & < m/(3log,m). This idea has been
used several times, most prominently in Agrep (see [73]). It is simple to implement and yields
extremely fast average search time in most practical cases.
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However, the above algorithm has a limit of applicability that prevents using it when k/m
becomes too large. Moreover, this limit is narrower for smaller o. This is, for example, the case
in several computational biology applications. In this case, the optimal algorithm by Chang
and Marr [16] becomes a practical choice. It can be used up to k/m < 1/3 — O(c~/?) and has
optimal average complexity (however, it is not as fast as partition into k + 1 pieces when the
latter can be applied). Their idea is an improvement of previous algorithms that use g-grams
(for example [69]).

This algorithm works as follows. The text is divided into consecutive blocks of length (m —
k)/2. Since any occurrence of P is of length at least m — k, any occurrence contains at least one
complete block. A number ¢ is chosen, in a way that will be made clear soon.

The preprocessing of P consists in computing, for every string S of length ¢, the minimum
number of differences needed to find S inside P. Preprocessing time is O(mo?) and space is
O(a?).

The search stage proceeds as follows. For each text block Z, its consecutive g-grams 7.,
Zg41..2¢> --- are read one by one, and their minimum differences to match them inside P are
accumulated. This is continued until (7) the accumulated differences exceed k, in which case the
current block cannot be contained in an occurrence, and we can go on to the next block; (i) we
reach the end of the block, in which case the block is verified.

It is shown that on average one examines O(k/q+1) g-grams per block, so O(k+¢q) characters
are examined. On the other hand, ¢ must be Q(log, m) so that the probability of verifying a
block is low enough. This yields overall time O((k + log, m)n/m) for k/m < 1/3 — O(c—1/?),
with space polynomial in m.

For the same limit on k/m, another practical algorithm is obtained by combining a bit-
parallel algorithm with a BNDM scheme, as done by Navarro and Raffinot [57] and Hyyré and
Navarro [37]. For higher k/m ratios, no good filtering algorithm exists, and the only choice is
to resort to classical or pure bit-parallel algorithms.

3.6.3 Extensions

Recently, the average-optimal results for approximate string matching were extended to search-
ing for r patterns by Fredriksson and Navarro [26]. They showed that the average complexity
of the problem is O((k + log,(rm))n/m), and obtained an algorithm achieving that complex-
ity. This is similar to the algorithm for one pattern, except that ¢-grams are preprocessed so
as to find their minimum number of differences across all the patterns in the set. This time
q = O(log,(rm)). They showed that the result is useful in practice.

The other choice to address this problem is to partition each pattern in the set into k& +
1 pieces and search for the r(k + 1) pieces in the set, verifying each piece occurrence for a
complete occurrence of the patterns containing the piece. The search time is not optimal,
O(knlog,(rm)/m), but it is the best in practice for low k/m values.

Approximate searching of complex pattern has been addressed by Navarro in Nrgrep, by
combining Shift-And and BNDM with the row-wise simulation of the NFA that recognizes P.
Each row of the NFA now recognizes a complex pattern P.

Finally, approximate searching of regular expressions can be done in O(mn) time and O(m)
space, as shown by Myers and Miller [49], and in general in O(mn/log s) time using O(s) space,
as shown by Wu et al. and Navarro [75, 53].

17



4 Indexed Text Searching

In this section we review the main techniques to maintain an index over the text, to speed up
searches. As explained, the text must be sufficiently static (few or no changes over time) to justify
indexing, as maintaining an index is costly compared to a single search. The best candidates
for indexing are fully static texts such as historical data and dictionaries, but indexing is also
applied to rather more dynamic data like the Web due to its large volume.

4.1 Index Points

In sequential searching we assumed that the user wanted to find any substring of the text. This
was because the algorithms are not radically different if this is not the case. However, indexing
schemes depend much more on the retrieval model, so we pay some attention to the issue now.

Depending on the retrieval needs, the user must define which positions of the text will be
indexed. Every position that must be indexed is called an indez-point. Only text substrings
starting at index points will be found by the search. For example, if the user wants to search
only for whole words or phrases, then index points will be initial word positions. On the other
hand, if the user wants to find any substring (for example in a DNA database), then every text
position is an index point. Figure 13 shows a piece of text, with a possible set of index-points.

to be at the beach or to be at work, that is the real question $ Text
0 A N A T S R
14 7 10 14 20 23 26 29 32 38 43 46 50 55 Index points

1: to be at the beach or to be at work, that is the real question
4: be at the beach or to be at work, that is the real question

7: at the beach or to be at work, that is the real question

10: the beach or to be at work, that is the real question

Suffixes

55: question
Figure 13: An example of index-points and their suffixes.

Under the view that the text is a set of its suffixes (Section 2.3), we take only the suffixes
starting at index points as the representation of the text. If the search is based on finding the
pattern as a prefix of any of those suffixes, it is automatically guaranteed that only index points
will be searched. As an additional advantage, this reduces the space required by the index.

4.2 Architecture

To improve retrieval capabilities, text content is usually standardized via a set of user-defined
transformations called normalization. Some common transformations on natural language text
are: mapping of characters, such as upper case letters transformed to lower case; special symbols
removed and sequences of multiple spaces or punctuation symbols reduced to one space (blank),
among others; definition of word separator/continuation letters and how they are handled; com-
mon words removed using a list of stop words; mapping of strings, for example, to handle
synonyms; numbers and dates transformed to a standard format; spelling variants transformed
using Soundex-like methods; and word stemming (removing suffixes and/or prefixes).
Normalization is usually done over a logical view of the text, not on the source text files. The
normalized text, together with the user-defined rules that determine which are index points, is

18



used to build the index.

The search pattern must also be normalized before searching the index for it. Once the text
search engine retrieves the set of text positions that match the pattern, the original text is used
to feed the user interface with the information that must be visualized.

Figure 14 shows the overall architecture.

Text Query

User-defined text normalization

User-defined .

index points Index‘mg

and structure Algorithm
(———

Search
_____ Algorithm
Text \|/ l/i Answer

User
Interface

Figure 14: An indexed full text retrieval system.

4.3 Suffix Trees and Suffix Arrays

The cleanest implementation of the full text model uses the fact that the text can be seen as
the set of its suffixes (that have been chosen as index points). Those suffixes can be stored into
a trie data structure, and the result is called the suffix trie of T. The only difference is that,
instead of storing the full suffix string 7; ,, at each leaf of the trie, we store only its initial text
position 7.

As explained in Section 2.4, we can search for any string S in a trie in worst-case time O(|S5]).
In particular, we can determine whether P is a prefix of any text suffix using the suffix trie of
T in worst-case time O(|P]). Since any occurrence of P in T is a prefix of some suffix of 7', it
follows that we can solve the search problem in optimal time, O(m). Moreover, if we traverse
all the leaves of the subtree arrived at in our search for P, the initial suffix positions stored in
those leaves are precisely the initial occurrence positions of P in T

Suffix tries permit searching for complex patterns as well. In general, the idea is that, since
any occurrence of P will be the prefix of a text suffix, and all text suffixes can be found by
traversing the suffix trie from the root, then one can backtrack over the suffix trie, following all
its paths, using an automaton that recognizes L(P). Every time the automaton dies (that is,
goes to the sink state if it is a complete DFA or runs out of active states otherwise), we know
that the current trie node is not a prefix of any occurrence of P and we abandon that branch.
Every time the automaton recognizes a string, we report all the positions stored at the leaves of
the subtree where recognition took place.
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This algorithm is general and works in sublinear time (that is, o(n)) in most cases. For
general regular expressions, the number of nodes traversed is O(n*), where 0 < A < 1 depends
on the structure of the regular expression, as shown by Baeza-Yates and Gonnet [10]. For
approximate searching the time is exponential in k, as shown by Ukkonen [68], and it can be
done O(nA) again by appropriately partitioning the pattern into pieces, as shown by Navarro
and Baeza-Yates [54]. This time A will be smaller than 1 if k/m < 1 —e/y/o. Other types of
sophisticated searches have been considered [43, 6, 34, 31].

The only problem with this approach is that the suffix trie may be rather large compared
to the text. In the worst case, it can be of size O(n?), although on average it is of size O(n).
To ensure O(n) size in the worst case, any unary path in the suffix trie is compacted into a
single edge. Edges now will be labeled by a string, not only a character. There are several ways
to represent the string labeling those edges in constant space. One is a couple of pointers to
the text, since those strings are text substrings. Another is to simply store its first character
and length, so the search skips some characters of P, which must be verified at the end against
T;. itm—1, where ¢ is the text position at any leaf in the answer. Since the resulting tree has
degree at least two and it has O(n) leaves (text suffixes) it follows that it is O(n) size in the
worst case. The result, due to Weiner [70], is called a suffiz tree [6, 31].

Suffix trees can be built in optimal O(n) worst-case time, as shown by McCreight and others
[46, 67, 29], and can simulate any algorithm over suffix tries with the same complexity. So in
practice they are preferred over suffix tries, although it is much easier to think of algorithms
over the suffix trie and then implement them over the suffix tree.

Still, suffix trees are unsatisfactory in most practical applications. The constant that mul-
tiplies their O(n) space complexity is large. Naively implemented, suffix trees require at least
20 bytes per index point (this can be as bad as 20 times the text size). Even the most space-
efficient implementations, by Giegerich et al. [30], takes 9 to 12 bytes per index point. Moreover,
its construction accesses memory at random, so it cannot be efficiently built (nor searched) in
secondary memory. There exist other related data structures such as Blumer et al.’s DAWG
(an automaton that recognizes all the text substrings, which can be obtained by minimizing
the suffix trie) [22], and Crochemore and Vérin’s Compact DAWG (the result of minimizing the
suffix tree) [23].

A much more efficient way to reduce space is to collect the tree leaves, from left to right,
into an array. The resulting array holds all the positions of all the text suffixes (that are index
points). Moreover, since they have been collected left to right from the suffix tree, suffixes
are ordered in lexicographical order in the array. This array was independently discovered by
Gonnet [33], who called it PAT array [32], and by Manber and Myers, who gave it the more
frequently used name suffiz array [44].

Typically the suffix array takes 4 bytes per index point, which is close to the space usage of
uncompressed inverted files when we index only word beginnings, and is 4 times the text size if
we index every text character. The suffix array for our running example is given in Figure 15.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| 7]29] 4]26]14]43]20]55]50]38]10]46] 1[23]32] Suffix Array
Tto Tbe Tat Tthe Tbeach Tor Tto Tbe Tat TWork, Ttha‘t Tis Tthe Treal question $ Text
14 7 10 14 20 23 26 29 32 38 43 46 50 55 Index points

Figure 15: The suffix array for our example text.
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Since suffixes are lexicographically sorted, all the suffixes that start with some prefix form an
interval in the suffix array. This permits searching for P in T using two binary searches in the
suffix array, for the initial and final interval position. This takes O(mlogn) time in the worst
case, which can be reduced to O(logn) by using some extra structures (that take more space)
[44]. At the end, all the array entries in the resulting interval are reported. Figure 16 illustrates.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| 7]29[ 4]26]14]43]20]55]50[38]10]46] 1 [23]32] Suffix Array
to be at the beach or to be at work, that is the real question $ Text
14 7 10 14 20 23 26 29 32 38 43 46 50 55 Index points

Figure 16: Searching for "be" in our example suffix array.

Indeed, it is not hard to see that suffix trie nodes correspond to suffix array intervals (of
length 1 in the case of trie leaves). This mapping can be used to translate any algorithm designed
over the suffix trie onto a suffix array. Every time we follow an edge in the suffix trie, we must
move to a smaller subinterval of the current interval in the suffix array, at the cost of two binary
searches. Hence, all the complexities obtained over suffix trees can be obtained on suffix arrays,
at an O(logn) extra cost factor.

Construction of suffix arrays can be done with O(nlogn) string comparisons by using any
sorting algorithm (note that a string comparison may take long, especially if the text has long
repeated substrings). A more sophisticated algorithm is given by Manber and Myers [44], which
is O(nlogn) worst-case time and O(nloglogn) average time. Recently, O(n) worst-case time
construction of suffix arrays has been achieved, simultaneously by Kim et al., Ko & Aluru, and
Karkkainen & Sanders [39, 42, 38].

When the suffix array and/or the text do not fit in main memory, however, the above
construction algorithms are impractical. The original algorithm devised by Gonnet et al. [32] is
still one of the best to build the suffix array in secondary memory [20]. Given M main memory,
they need O(n?log(M)/M) worst-case disk transfer time.

Once the suffix array has been built in secondary memory, some care must be taken in order
to search it because random accesses to disk are expensive. A useful technique by Baeza-Yates
et al. [8] is to build a supra-inder, obtained by sampling the suffix array at regular intervals and
collecting the first ¢ characters of the sampled suffixes. The supra-index should be small and fit
in main memory, so most of the binary search can be carried over the supra-index at no disk
transfer cost. Figure 17 illustrates.

Yet another way to reduce space requirement of suffix tries is to prune them at depth gq.
That is, every different text g-gram (at the beginning of index points) will be collected, and
its positions stored in a list associated to it, in increasing text position. The index can take
much less space than the suffix array because those increasing text positions can be encoded
differentially and compressed. It is still possible to search in this kind of indices by looking for
g-grams of P and doing some verification directly against the text. We can index only some of
the text g-grams in order to make the index even smaller, and still it is possible to search for
long enough patterns. This permits having indices that are smaller than the text, although they
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| 7]29] 4]26]14]43]20]55]50]38]10]46] 1 [23]32] Suffix Array
to be at the beach or to be at work, that is the real question $ Text
14 7 10 14 20 23 26 29 32 38 43 46 50 55 Index points

Figure 17: A supra-index for our example suffix array.

have higher search time and do not scale well for very large texts. This line has been pursued by
Sutinen, Tarhio, and others [63, 59], and can cope with both exact and approximate searching.
This is particularly attractive for computational biology applications.

4.4 Inverted Indices

When the text is (Western) natural language and users are satisfied with retrieving just words
and phrases (not any substring), inverted indices are a very attractive choice [13]. An inverted
index is simply a list of all the words appearing in the text (called the vocabulary), where each
word has attached a list of all its text positions, in increasing text order. The set of different
words is organized to permit fast searching, for example in a hash table. Figure 18 illustrates.

1 6 9 11 17 19 24 28 33 40 46 50 55 60

This is a text. A text has many words. Wrds are nade from letters.

Text
Vocabulary Occurrences
letters 60...
made 50...
many 28...
text 11, 19... Inverted Index
words 33, 40...

Figure 18: A text and its inverted index.

Searching for a simple word in an inverted index is as easy as looking for it in the vocabulary
and returning its list. Searching for a phrase requires fetching the lists of each word and (essen-
tially) intersecting them so as to find the places where they appear consecutively in the text.
More complex searching, such as finding all the words that match some regular expression or
approximate searching for a word, is possible by scanning the whole vocabulary using a sequen-
tial text search algorithm, returning all the words that matched the pattern, and computing the
union of their occurrence lists, as first suggested by Manber and Wu [45]. This works well be-
cause the vocabulary is small compared to the text. It is empirically known that the vocabulary
grows approximately like O(y/n) [35].

We note, however, that this is just an intra-word search: if a spurious insertion in the text
split a word into two, an approximate search for the word allowing k& = 1 differences will not
find the word. Similarly, regular expressions containing separators cannot be searched for with
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this technique.

Inverted indices can be easily built in O(n) time in main memory. In secondary memory,
one has to build partial indices that fit in main memory and then merge them, which can be
done in O(nlog(n/M)) disk transfer time. Searching in secondary memory is efficient because
the lists are accessed sequentially. The vocabulary usually fits in main memory because it grows
slowly compared to the text, as explained. This would not be the case if we had used instead
fixed substrings of length ¢, as done in g-gram indices.

Compared with suffix arrays, inverted indices take in principle the same amount of space:
one pointer per index point. However, since they store long lists of increasing positions that are
accessed sequentially, differential encoding permits saving 50% of space at least. Moreover, it
might also be convenient to deliver text positions in increasing order, rather than at random
like the suffix array. On the other hand, suffix arrays permit searching for complex patterns
that cannot be searched for using inverted indices. Even phrase searching is simpler (and can
be faster) using a suffix array.

Finally, the space of the inverted index can be further reduced by combining it with sequential
searching. The text is divided into blocks, and words point to the blocks where they appear,
rather than their exact position. A text search must first obtain which blocks contain the word
and then sequentially scan the blocks for the desired word or phrase. This produces a space-
time tradeoff related to the block size. The idea was first proposed by Manber and Wu, who
implemented it in an index called Glimpse [45] designed for personal use. Baeza-Yates and
Navarro [12] proved that, by choosing appropriately the block size, the index can take o(n)
space and have o(n) average search time simultaneously.

Finally, in natural language the text itself can be compressed up to 25%-30% of its original
size and searched directly, without decompression, faster than the original text, as shown by
Moura et al. [47]. This idea has been combined with inverted indices pointing to blocks by
Navarro et al. [55].
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