
Lecture Notes on
Binary Decision Diagrams

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 19
October 28, 2010

1 Introduction

In this lecture we revisit the important computational thinking principle
programs-as-data. We also reinforce the observation that asymptotic complex-
ity isn’t everything. The particular problem we will be considering is how to
autograde functions on integers, something that is actually done in a sub-
sequent course 15-213 Computer Systems. The autograder in that class uses
the technology we develop in this and the next lecture.

2 Boolean Functions

Binary decision diagrams (BDDs) and their refinements are data structures
for representing boolean functions, that is, functions that take booleans as
inputs and produce a boolean as output. Let us briefly analyze the structure
of boolean functions before we go into representing them. There are two
boolean values, in C0 represented as true and false. In this lecture we will
use to the bit values 1 and 0 to represent booleans, for the sake of brevity
and following the usual convention in the study of boolean functions.

For a function with n boolean arguments, there are 2n different pos-
sible inputs. The output is a single boolean, where for each input we
can independently chose the output to be 0 or 1. This means we have
2 ∗ 2 ∗ · · · ∗ 2︸ ︷︷ ︸

2n

= 22n
different functions.

Another way to think of a function of n boolean arguments is a function
taking a single (unsigned) integer in the range from 0 to 2n − 1. Such a

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.2

boolean function then represents a set of n-bit integers: a result of 0 means
the integer is not in the set, and 1 means the integer is in the set. Since there
are 2k different subsets of a set with k elements, we once again obtain 22n

different n-ary boolean functions.
Functions from fixed-precision integers to integers can be reduced to

boolean functions. For example, a function taking one 32-bit integer as an
argument and returning a 32-bit integer can be represented as 32 boolean
functions

bool f0(bool x0, . . . , bool x31)
. . .
bool f31(bool x0, . . . , bool x31)

each of which returns one bit of the output integer.
For the purpose of autograding, we would like to provide a reference

implementation as a boolean function (perhaps converted from an integer
function) and then check whether the student-supplied function is equal
to the reference function. In other words, we have to be able to compare
boolean functions for equality. If they don’t agree, we would like to be able
to give a counterexample.

One way to do this would be to apply both functions to all the possible
inputs and compare the outputs. If they agree on all inputs they must be
equal, if not we print the input on which they disagree as a counterexample
to correctness. But even for a single function from int to bool this would
be infeasible, with about 232 = 4G (about 4 billion) different inputs to try.
This kind of “brute-force” approach treats “functions as functions” in the
sense that we just apply the functions to inputs and observe the outputs.

An alternative is to explicitly represent boolean functions in some form
of data structure and compute with them symbolically, that is, treat “func-
tions as data”. We discuss a succession of such symbolic representations in
the next few sections.

3 Binary Decision Trees

Binary decision trees are very similar to binary tries. Assume we have
boolean variables x1, . . . , xn making up the input to a function. At the root
node we test one of the variables, say, x1, and we have two subtrees, one
for the case where x1 = 0 and one where x1 = 1. Each of the two subtrees
is now testing another variable, each with another two subtrees, and so on.
At the leaves we have either 0 or 1, which is the output of the function on
the inputs that constitute the path from the root to the leaf.

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.3

For example, consider conjunction (“and”). In C0 we could write

bool and(bool x1, bool x2) { return x1 && x2; }

In mathematical notation, we usually write x1 ∧ x2. In the diagram below
for x1 ∧ x2, we indicate the 0 (left) branch with a dashed line and the 1
(right) branch with a solid line. This convention will make it easier to draw
diagrams without a lot of intersecting lines.

x1 

x2 x2 

0  1 0 0 

0 

0 

1  1 

1 

1 

0 

As another example, consider disjunction (“or”). In C0 we would write

bool or(bool x1, bool x2) { return x1 || x2; }

In mathematical notation, we usually write x1 ∨ x2.

x1 

x2 x2 

1  1 1 0 

0 

0 

1  1 

1 

1 

0 

Just one more example, exclusive or, which is mathematically often
written as x1⊕x2. We cannot write x1 ^ x2 because the exclusive-or oper-
ator in C0 is an operation on arguments of type int not bool. Nevertheless,
it is easy to define.

bool xor(bool x1, bool x2) { return (x1 && !x2) || (!x1 && x2); }

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.4

As a binary decision tree, this would be

x1 

x2 x2 

1  0 1 0 

0 

0 

1  1 

1 

0 

Binary decisions trees have some nice properties, but also some less
pleasant ones. The biggest problem is their size. A binary decision tree of n
variables will have 2n − 1 decision nodes, plus 2n links at the lowest level,
pointing to the return values 0 and 1.

A nice property is canonicity: if we test variables in a fixed order x1, . . . , xn,
then the binary decision tree is unique. We could therefore test the equiv-
alence of two boolean functions by comparing their binary decision trees
for equality. However, if implemented in a naive way this equality test is
exponential in the number of variables, because that is the size of the two
trees we have to compare.

A note on terminology: if the order of the variables we test is fixed,
we refer to decision trees as ordered. Ordered binary decision trees are iso-
morphic to binary tries storing booleans at the leaves. Also, we identify
the subtrees (and later subdiagrams) of a node labeled by x as the low (for
x = 0) and high (for x = 1) successors.

We would like to make the representation of boolean functions more
compact than decision trees while preserving canonicity to make it easy to
compare functions for equality. Recall that, among other operations, com-
parison of equality is what we need for autograding purposes.

4 Binary Decision Diagrams

Binary decision diagrams (BDDs) differ from binary decision trees in two
ways. First, they allow redundant test of boolean variables to be omitted.
For example, in the tree for x1 ∧ x2, both branches in the test of x2 on the
left lead to 0, so there really is no need to test x2 at all. We can simplify this

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.5

to the following BDD.

x1 

x2 

0  1 0 

0 

0 

1 

1 

The second improvement is to allow sharing of identical subtrees. The
following is a BDD for the function that returns 1 if the inputs have odd
parity (that it, an odd number of 1’s) and 0 if the inputs have even parity
(that is, an even number of 1’s). Rather than 15 nodes and 2 (or 16) leaves, it
only has 7 nodes and 2 leaves, exploiting a substantial amount of sharing.

x1 

x2 x2 

1 0 

1 

0 

1 
0 

1 

0 

x3 x3  1 1 

0 0 

x4 x4  1 1 

0 0 

In the worst case, the size of a BDD will still exponential in the number
of variables, but in many practically occuring cases it will be much smaller.
For example, independently of the number of variables, the constant func-
tion returning 0 can be represented by just a single node, as can the constant
function returning 1.

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.6

5 Reduced Ordered Binary Decision Diagrams

Reduced ordered decision diagrams (ROBDDs) are based on a fixed order-
ing of the variables and have the additional property of being reduced. This
means:

Irredundancy: The low and high successors of every node are distinct.

Uniqueness: There are no two distinct nodes testing the same variable
with the same successors.

ROBBDs recover the important canonicity property: for a fixed variable or-
dering, each boolean function has a canonical (unique) representation as
an ROBDD. This means we can compare boolean functions by constructing
their ROBDDs and checking if they are equal.

ROBDDs have at most two leaf nodes, labeled 0 and 1. We sometimes
draw them multiple times to avoid complex edges leading to them.

6 Constructing ROBDDs

The naive way to construct an ROBDD is to construct a binary decision
tree and then incrementally eliminate redundancies and identify identical
subtrees. Unfortunately, this would always take exponential time, because
that’s how long it takes to construct the original decision tree.

Another way is to follow the structure of the boolean expression that
defines the function. To see how this works we have to see how to imple-
ment each of the boolean functions that make up expressions as operations
on ROBDDs. As a running example, we use

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

To construct an ROBDD for this expression, we start on the left, construct-
ing an ROBDD for x1 ∨ x2. We have already seen the result, but here we
decompose it further into the two variables x1 and x2. The ROBDDs for

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.7

these are the following:

x1 

1 0 

0  1 

x2 

1 0 

0  1 

We have already drawn them in a way that is suggestive of the variable
ordering (x1 before x2).

Applying any boolean operation to two ROBDDs with the same vari-
able order means to start at the root and follow parallel paths to the leaves.
Once we arrive at the leaves, we apply the given boolean operation to the
boolean constants 0 and 1 to form the result for that particular path. We
(implicitly) expand variables that are not being tested to see what is would
mean to descend to the low or high successor.

In our example we start at x1 on the left and a hypothetical x1 on the
right.

x1 

1 0 

0  1 

x2 

1 0 

0  1 

x1 
0  1 

If we follow the low successor on the left and right, we end up at a hypo-

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.8

thetical x2 on the left.

x1 

1 0 

0  1 

x2 

1 0 

0  1 

x1 
0  1 

x2 

x1 

x2 

0 
1 

0 

We show the partially constructed ROBDD on the bottom.
At this point, we follow the 0-successor in both given BDDs. Both lead

us to 0, so we have to calculate 0 ∨ 0 = 0 and put 0 as the result.

x1 

1 0 

0  1 

x2 

1 0 

0  1 

x1 
0  1 

x2 

x1 

x2 

0 
1 

0 

0 

0 

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.9

Now we go back up one level to x2 and follow the 1-successor, which leads
us to 0 on the left diagram and 1 in the right diagram. Since 0 ∨ 1 = 1, we
output 1 in this case.

x1 

1 0 

0  1 

x2 

1 0 

0  1 

x1 
0  1 

x2 

x1 

x2 

0 
1 

0 

0 

0 

1 

Next we return to x1 and consider the case that x1 = 1 and then x2 = 0. In
this case we compute 1 ∨ 0 = 1 and we have to output 1 for this branch.
This time, the node for x2 in the left diagram is only a conceptual device
guiding our algorithm; in an actual implementation we would probably

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.10

not construct it explicitly.

x1 

1 0 

0 

1 

x2 

1 0 

0  1 

x1 
0  1 

x2 

x1 

x2 

0 

1 

0 

0 

0 

1 

1 

x2 

1 

0 

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.11

Finally, we follow the 1-successor from both x2 nodes and again arrive at 1.

x1 

1 0 

0 

1 

x2 

1 0 

0  1 

x1 
0  1 

x2 

x1 

x2 

0 

1 

0 

0 

0 

1 

1 

x2 

1 

0 
1 

As we now return back up the tree we note both low and high successors
of the right occurrence of x2 are identical, and we eliminate the node, just
returning a reference to the constant 1 instead. We obtain the already fa-
miliar diagram for x1 ∨ x2. This should be no surprise, since ROBDDs are
canonical, it must in fact be the same as we had before.

1 

x1 

x2 

0 

0 

0 

1 

1 

Here is a summary of the algorithm for applying a boolean operation
to two binary decision diagrams. We traverse both diagrams in parallel, al-
ways following 0-links or 1-links in both given diagrams. When a variable

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.12

is tested in one diagram but not the other, we proceed as if it were present
and had identical high and low successors. When we reach the leaves 0
or 1 on both sides, we apply the boolean operation to these constants and
return the appropriate constant.

As we return, we avoid redundancy in two ways:

1. If the call on low and high successors return the same node, do not
construct a new node but just return the single one we already ob-
tained up the tree. This avoids redundant tests.

2. If we would be about to construct a node that is already in the result-
ing diagram somewhere else (that is, has the same variable label and
the same successor nodes), do not make a new copy but just return
the node we already have.

These two guarantee irreduncancy and canonicity, and the result will be a
valid ROBDD.

Returning to our original example, we wanted to construct an ROBDD
for (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2). From an ROBDD for some expression e we can
construct the negation but just swapping 0 with 1 at the leaves. Doing this,
and then applying our algorithm again for a disjunction, yields the follow-
ing two trees, for x1 ∨ x2 on the left, and ¬x1 ∨ ¬x2 on the right. You are
invited to test your understanding of the algorithm for combining ROBDDs
by applying to two these to diagrams, construction their conjunction.

1 

x1 

x2 

0 

0 

0 

1 

1 

1 

x1 

x2 

0 

1 

0 

0 

1 

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.13

If you do this correctly, you should arrive at the following.

x1 

x2 x2 

1 0 

0 

0 

1  1 

1 

0 

Looking back at the binary decision tree for exclusive-or,

x1 

x2 x2 

1  0 1 0 

0 

0 

1  1 

1 

0 

we see that they are the same once we have identified the leaf nodes. This
is a proof that

x1 ⊕ x2 ≡ ((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2))

that is, the expression on the right implements exclusive-or using disjunc-
tion, conjunction, and negation.

7 Validity and Satisfiability

We say that a boolean expression is valid if it is equivalent to true. That
is, no matter which truth values we assign to its variables, the value of the
expression is always 1. Or, it is the body of a constant boolean function
always returning true.

Using the ROBDD technology, it is quite easy to check whether a boolean
expression is valid: we construct its ROBDD and see if the result is equal to

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.14

1. This exploits the canonicity of ROBDDs in an interesting and essential
way.

We say that a boolean expression is satisfiable if there is some assignment
of truth values to its variables such that its value is true. For a boolean
function, this would mean it there is some input on which the function
returns true. Again, we can use ROBDDs to decide if a boolean expression
is satisfiable. We construct an ROBDD and test whether it is the constant 0.
If yes, then it is not satisfiable. Otherwise, there must be some combination
of tests on variables that yields 1, and the expression is therefore satisfiable.

In order to construct a satisfying assignment (assuming on exists), we
can just traverse the BDD starting at the root, following arbitrary links that
do not go to 0. Eventually we must reach 1, having recorded the choices
we made on the way as the satisfying assignment.

In order to compute the number of satisfying assignments, we can just
recursively compute the number of satisfying assignments for each subtree
and add them together. Care must be taken that when we come to a missing
test (because it is redundant) we think of it as a test with two identical
successors. This just means we multiply the number of solutions for the
successor node by 2.

These operations will be important when we consider applications va-
lidity and satisfiability in the next lecture.

LECTURE NOTES OCTOBER 28, 2010

Binary Decision Diagrams L19.15

Exercises

Exercise 1 Construct a 3-variable ROBDD which has maximal size. How many
distinct nodes does it have?

Exercise 2 Demonstrate by example that ordering we chose for variable can have
a significant impact on the size of the ROBDD.

Exercise 3 In the autograding application, we can compare ROBDDs for equality
in order to be ensured of correctness, because the representation of boolean func-
tions is canonical. Explain how we can obtain a counterexample in case the
ROBDD constructed from the student’s function is not identical to the one con-
structed from the reference implementation.

Exercise 4 Many functions on integers have a restricted domain. For example,
under a two’s-complement representation the integer logarithm would be defined
only for positive numbers. For other inputs, the result is irrelevant, so a student
function should be considered correct if and only if it agrees with the reference
implementation for every integer in a specified domain (rather than on all inputs).

Explain how to modify the autograder sketched in this lecture to account for
domain specifications. Consider a domain as given by a boolean expression which
returns 1 for an element in the domain and 0 for an element not in the domain of a
function. This is just like specifying a precise precondition.

LECTURE NOTES OCTOBER 28, 2010

	Introduction
	Boolean Functions
	Binary Decision Trees
	Binary Decision Diagrams
	Reduced Ordered Binary Decision Diagrams
	Constructing ROBDDs
	Validity and Satisfiability

