
The information security world is rich with information. From reviewing logs
to analyzing malware, information is everywhere and in vast quantities, more
than the workforce can cover. Artificial intelligence is a field of study that is
adept at applying intelligence to vast amounts of data and deriving meaningful
results. In this book, we will cover machine learning techniques in practical
situations to improve your ability to thrive in a data driven world. With
clustering, we will explore grouping items and identifying anomalies. With
classification, we’ll cover how to train a model to distinguish between classes
of inputs. In probability, we’ll answer the question “What are the odds?”
and make use of the results. With deep learning, we’ll dive into the powerful
biology inspired realms of AI that power some of the most effective methods
in machine learning today.

The Cylance Data Science team consists of experts in a variety of fields.
Contributing members from this team for this book include Brian Wallace, a
security researcher turned data scientist with a propensity for building tools
that merge the worlds of information security and data science. Sepehr
Akhavan-Masouleh is a data scientist who works on the application of
statistical and machine learning models in cyber-security with a Ph.D from
University of California, Irvine. Andrew Davis is a neural network wizard
wielding a Ph.D in computer engineering from University of Tennessee.
Mike Wojnowicz is a data scientist with a Ph.D. from Cornell University who
enjoys developing and deploying large-scale probabilistic models due to
their interpretability. Data scientist John H. Brock researches applications
of machine learning to static malware detection and analysis, holds an M.S.
in computer science from University of California, Irvine, and can usually be
found debugging Lovecraftian open source code while mumbling to himself
about the virtues of unit testing.

THE CYLANCE PRESS
IRVINE, CA

© 2017 The Cylance Data Science Team

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by
any means electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the publisher.

Published by
The Cylance Data Science Team.

Introduction to artificial intelligence for security
professionals / The Cylance Data Science Team. –
Irvine, CA : The Cylance Press, 2017.

p. ; cm.

Summary: Introducing information security
professionals to the world of artificial intelligence and
machine learning through explanation and examples.

ISBN13: 978-0-9980169-0-0

1. Artificial intelligence. 2. International security.
I. Title.

TA347.A78 C95 2017
006.3—dc23	 2017943790

FIRST EDITION

Project coordination by Jenkins Group, Inc.
www.BookPublishing.com

Interior design by Brooke Camfield

Printed in the United States of America
21  20  19  18  17  •  5  4  3  2  1

	 Foreword	 v

	� Introduction
Artificial Intelligence: The Way Forward in Information Security	 ix

1	� Clustering
Using the K-Means and DBSCAN Algorithms	 1

2	� Classification
Using the Logistic Regression and Decision Tree Algorithms	 37

3	 Probability	 79

4	 Deep Learning	 115

Contents

v

Foreword
by Stuart McClure

My first exposure to applying a science to computers

came at the University of Colorado, Boulder, where, from 1987-

1991, I studied Psychology, Philosophy, and Computer Science

Applications. As part of the Computer Science program, we

studied Statistics and how to program a computer to do what we

as humans wanted them to do. I remember the pure euphoria

of controlling the machine with programming languages, and I

was in love.

In those computer science classes we were exposed to Alan

Turing and the quintessential “Turing Test.” The test is simple:

Ask two “people” (one being a computer) a set of written ques-

tions, and use the responses to them to make a determination.

If the computer is indistinguishable from the human, then it

has “passed” the test. This concept intrigued me. Could a com-

puter be just as natural as a human in its answers, actions, and

thoughts? I always thought, Why not?

Flash forward to 2010, two years after rejoining a tier 1 anti-

virus company. I was put on the road helping to explain our

roadmap and vision for the future. Unfortunately, every conver-

sation was the same one I had been having for over twenty years:

We need to get faster at detecting malware and cyberattacks.

Faster, we kept saying. So instead of monthly signature updates,

we would strive for weekly updates. And instead of weekly we

vi  Introduction to Artificial Intelligence for Security Professionals

would fantasize about daily signature updates. But despite mil-

lions of dollars driving toward faster, we realized that there is

no such thing. The bad guys will always be faster. So what if we

could leap frog them? What if we could actually predict what

they would do before they did it?

Since 2004, I had been asked quite regularly on the road,

“Stuart, what do you run on your computer to protect your-

self?” Because I spent much of my 2000s as a senior executive

inside a global antivirus company, people always expected me

to say, “Well of course, I use the products from the company I

work for.” Instead, I couldn’t lie. I didn’t use any of their prod-

ucts. Why? Because I didn’t trust them. I was old school. I only

trusted my own decision making on what was bad and good.

So when I finally left that antivirus company, I asked myself,

“Why couldn’t I train a computer to think like me—just like a

security professional who knows what is bad and good? Rather

than rely on humans to build signatures of the past, couldn’t we

learn from the past so well that we could eliminate the need for

signatures, finally predicting attacks and preventing them in real

time?”

And so Cylance was born.

My Chief Scientist, Ryan Permeh, and I set off on this crazy

and formidable journey to completely usurp the powers that

be and rock the boat of the establishment—to apply math and

science into a field that had largely failed to adopt it in any

meaningful way. So with the outstanding and brilliant Cylance

Data Science team, we achieved our goal: protect every com-

puter, user, and thing under the sun with artificial intelligence

to predict and prevent cyberattacks.

So while many books have been written about artificial

intelligence and machine learning over the years, very few

have offered a down to earth and practical guide from a purely

Foreword  vii

cybersecurity perspective. What the Cylance Data Science

Team offers in these pages is the very real-world, practical, and

approachable instruction of how anyone in cybersecurity can

apply machine learning to the problems they struggle with every

day: hackers.

So begin your journey and always remember, trust yourself

and test for yourself.

ix

Introduction
Artificial Intelligence: The Way
Forward in Information Security

Artificial Intelligence (AI) technologies are rapidly

moving beyond the realms of academia and speculative fiction

to enter the commercial mainstream. Innovative products such

as Apple’s Siri® digital assistant and the Google search engine,

among others, are utilizing AI to transform how we access and

utilize information online. According to a December 2016 report

by the Office of the President:

Advances in Artificial Intelligence (AI) technology

and related fields have opened up new markets and

new opportunities for progress in critical areas such

as health, education, energy, economic inclusion,

social welfare, and the environment.1

AI has also become strategically important to national

defense and securing our critical financial, energy, intelligence,

and communications infrastructures against state-sponsored

cyber-attacks. According to an October 2016 report2 issued

1.	� Executive Office of the President, Artificial Intelligence, Automation, and the
Economy, December 20, 2016. Available for download at https://www.whitehouse.
gov/sites/whitehouse.gov/files/images/EMBARGOED%20AI%20Economy%20Report.
pdf

2.	� National Science and Technology Council’s Subcommittee on Machine Learning
and Artificial Intelligence, Preparing for the Future of Artificial Intelligence,
October 2016. Available for download at https://obamawhitehouse.archives.gov/
sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_
future_of_ai.pdf

x  Introduction to Artificial Intelligence for Security Professionals

by the federal government’s National Science and Technology

Council Committee on Technology (NSTCC):

AI has important applications in cybersecurity, and

is expected to play an increasing role for both defen-

sive and offensive cyber measures. . . . Using AI may

help maintain the rapid response required to detect

and react to the landscape of evolving threats.

Based on these projections, the NSTCC has issued a National

Artificial Intelligence Research and Development Strategic Plan3

to guide federally-funded research and development.

Like every important new technology, AI has occasioned

both excitement and apprehension among industry experts and

the popular media. We read about computers that beat Chess

and Go masters, about the imminent superiority of self-driving

cars, and about concerns by some ethicists that machines could

one day take over and make humans obsolete. We believe that

some of these fears are over-stated and that AI will play a pos-

itive role in our lives as long AI research and development is

guided by sound ethical principles that ensure the systems we

build now and in the future are fully transparent and account-

able to humans.

In the near-term however, we think it’s important for security

professionals to gain a practical understanding about what AI is,

what it can do, and why it’s becoming increasingly important to

our careers and the ways we approach real-world security prob-

lems. It’s this conviction that motivated us to write Introduction

to Artificial Intelligence for Security Professionals.

3.	� National Science and Technology Council’s Subcommittee on Machine Learning
and Artificial Intelligence, National Artificial Intelligence Research and
Development Strategic Plan, October 2016. Available for download at
https://www.nitrd.gov/PUBS/national_ai_rd_strategic_plan.pdf

Artificial Intelligence: The Way Forward in Information Security  xi

You can learn more about the clustering, classification, and

probabilistic modeling approaches described in this book from

numerous websites, as well as other methods, such as generative

models and reinforcement learning. Readers who are techni-

cally-inclined may also wish to educate themselves about the

mathematical principles and operations on which these meth-

ods are based. We intentionally excluded such material in order

to make this book a suitable starting point for readers who are

new to the AI field. For a list of recommended supplemental

materials, visit https://www.cylance.com/intro-to-ai.

It’s our sincere hope that this book will inspire you to begin

an ongoing program of self-learning that will enrich your skills,

improve your career prospects, and enhance your effectiveness

in your current and future roles as a security professional.

AI: Perception Vs. Reality

The field of AI actually encompasses three distinct areas of

research:

•	 Artificial Superintelligence (ASI) is the kind popularized

in speculative fiction and in movies such as The Matrix.

The goal of ASI research is to produce computers that

are superior to humans in virtually every way, possess-

ing what author and analyst William Bryk referred to as

“perfect memory and unlimited analytical power.”4

•	 Artificial General Intelligence (AGI) refers to a machine

that’s as intelligent as a human and equally capable of

solving the broad range of problems that require learning

and reasoning. One of the classic tests of AGI is the abil-

ity to pass what has come to be known as “The Turing

4.	� William Bryk, Artificial Intelligence: The Coming Revolution, Harvard Science
Review, Fall 2015 issue. Available for download at https://harvardsciencereview.
files.wordpress.com/2015/12/hsrfall15invadersanddefenders.pdf

xii  Introduction to Artificial Intelligence for Security Professionals

Test,”5 in which a human evaluator reads a text-based

conversation occurring remotely between two unseen

entities, one known to be a human and the other a

machine. To pass the test, the AGI system’s side of the

conversation must be indistinguishable by the evaluator

from that of the human.

		 Most experts agree that we’re decades away from

achieving AGI and some maintain that ASI may ulti-

mately prove unattainable. According to the October

2016 NSTC report,6 “It is very unlikely that machines

will exhibit broadly-applicable intelligence comparable

to or exceeding that of humans in the next 20 years.”

•	 Artificial Narrow Intelligence (ANI) exploits a comput-

er’s superior ability to process vast quantities of data

and detect patterns and relationships that would oth-

erwise be difficult or impossible for a human to detect.

Such data-centric systems are capable of outperforming

humans only on specific tasks, such as playing chess or

detecting anomalies in network traffic that might merit

further analysis by a threat hunter or forensic team.

These are the kinds of approaches we’ll be focusing on

exclusively in the pages to come.

The field of Artificial Intelligence encompasses a broad

range of technologies intended to endow computers with

human-like capabilities for learning, reasoning, and drawing

useful insights. In recent years, most of the fruitful research

5.	� A.M. Turing (1950), Computing Machinery and Intelligence, Mind, 59, 433-460.
Available for download at http://www.loebner.net/Prizef/TuringArticle.html

6.	� National Science and Technology Council’s Subcommittee on Machine Learning
and Artificial Intelligence, Preparing for the Future of Artificial Intelligence,
October 2016. Available for download at https://obamawhitehouse.archives.gov/
sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_
future_of_ai.pdf

Artificial Intelligence: The Way Forward in Information Security  xiii

and advancements have come from the sub-discipline of AI

named Machine Learning (ML), which focuses on teaching

machines to learn by applying algorithms to data. Often, the

terms AI and ML are used interchangeably. In this book, how-

ever, we’ll be focusing exclusively on methods that fall within

the machine learning space.

Not all problems in AI are candidates for a machine learning

solution. The problem must be one that can be solved with data; a

sufficient quantity of relevant data must exist and be acquirable;

and systems with sufficient computing power must be available

to perform the necessary processing within a reasonable time-

frame. As we shall see, many interesting security problems fit

this profile exceedingly well.

Machine Learning in the Security Domain

In order to pursue well-defined goals that maximize productiv-

ity, organizations invest in their system, information, network,

and human assets. Consequently, it’s neither practical nor desir-

able to simply close off every possible attack vector. Nor can we

prevent incursions by focusing exclusively on the value or prop-

erties of the assets we seek to protect. Instead, we must consider

the context in which these assets are being accessed and utilized.

With respect to an attack on a website, for example, it’s the con-

text of the connections that matters, not the fact that the attacker

is targeting a particular website asset or type of functionality.

Context is critical in the security domain. Fortunately, the

security domain generates huge quantities of data from logs,

network sensors, and endpoint agents, as well as from distrib-

uted directory and human resource systems that indicate which

user activities are permissible and which are not. Collectively,

this mass of data can provide the contextual clues we need to

identify and ameliorate threats, but only if we have tools capable

xiv  Introduction to Artificial Intelligence for Security Professionals

of teasing them out. This is precisely the kind of processing in

which ML excels.

By acquiring a broad understanding of the activity sur-

rounding the assets under their control, ML systems make it

possible for analysts to discern how events widely dispersed in

time and across disparate hosts, users, and networks are related.

Properly applied, ML can provide the context we need to reduce

the risks of a breach while significantly increasing the “cost of

attack.”

The Future of Machine Learning

As ML proliferates across the security landscape, it’s already

raising the bar for attackers. It’s getting harder to penetrate

systems today than it was even a few years ago. In response,

attackers are likely to adopt ML techniques in order to find new

ways through. In turn, security professionals will have to utilize

ML defensively to protect network and information assets.

We can glean a hint of what’s to come from the March 2016

match between professional Go player Lee Sedol an eighteen-time

world Go champion, and AlphaGo a computer program devel-

oped at DeepMind, an AI lab based in London that has since

been acquired by Google. In the second game, AlphaGo made a

move that no one had ever seen before. The commentators and

experts observing the match were flummoxed. Sedol himself

was so stunned it took him nearly fifteen minutes to respond.

AlphaGo would go on to win the best-of-five game series.

In many ways, the security postures of attack and defense

are similar to the thrust and parry of complex games like Go

and Chess. With ML in the mix, completely new and unexpected

threats are sure to emerge. In a decade or so, we may see a

landscape in which “battling bots” attack and defend networks

Artificial Intelligence: The Way Forward in Information Security  xv

on a near real-time basis. ML will be needed on the defense side

simply to maintain parity.

Of course, any technology can be beaten on occasion with

sufficient effort and resources. However, ML-based defenses are

much harder to defeat because they address a much broader

region of the threat space than anything we’ve seen before and

because they possess human-like capabilities to learn from their

mistakes.

What AI Means to You

Enterprise systems are constantly being updated, modified, and

extended to serve new users and new business functions. In such

a fluid environment, it’s helpful to have ML-enabled “agents” that

can cut through the noise and point you to anomalies or other

indicators that provide forensic value. ML will serve as a produc-

tivity multiplier that enables security professionals to focus on

strategy and execution rather than on spending countless hours

poring over log and event data from applications, endpoint con-

trols, and perimeter defenses. ML will enable us to do our jobs

more efficiently and effectively than ever before.

The trend to incorporate ML capabilities into new and exist-

ing security products will continue apace. According to an April

2016 Gartner report7:

•	 By 2018, 25% of security products used for detection will

have some form of machine learning built into them.

•	 By 2018, prescriptive analytics will be deployed in at

least 10% of UEBA products to automate response to

incidents, up from zero today.

7.	� Gartner Core Security, The Fast-Evolving State of Security Analytics, April,
2016, Report ID: G00298030 accessed at https://hs.coresecurity.com/gartner-
reprint-2017

xvi  Introduction to Artificial Intelligence for Security Professionals

In order to properly deploy and manage these products, you

will need to understand what the ML components are doing so

you can utilize them effectively and to their fullest potential. ML

systems are not omniscient nor do they always produce perfect

results. The best solutions will incorporate both machine learn-

ing systems and human operators. Thus, within the next three to

four years, an in-depth understanding of ML and its capabilities

will become a career requirement.

About This Book

This book is organized into four chapters:

1.	 Chapter One: Clustering Clustering encompasses a vari-

ety of techniques for sub-dividing samples into distinct

sub-groups or clusters based on similarities among their

key features and attributes. Clustering is particularly

useful in data exploration and forensic analysis thanks to

its ability to sift through vast quantities of data to identify

outliers and anomalies that require further investigation.

In this chapter, we examine:

•	 The step-by-step computations performed by the

k-means and DBSCAN clustering algorithms.

•	 How analysts progress through the typical stages of

a clustering procedure. These include data selection

and sampling, feature extraction, feature encoding

and vectorization, model computation and graphing,

and model validation and testing.

•	 Foundational concepts such as normalization, hyper-

parameters, and feature space.

•	 How to incorporate both continuous and categorical

types of data.

Artificial Intelligence: The Way Forward in Information Security  xvii

•	 We conclude with a hands-on learning section

showing how k-means and DBSCAN models can be

applied to identify exploits similar to those associ-

ated with the Panama Papers breach, which, in 2015,

was discovered to have resulted in the exfiltration of

some 11.5 million confidential documents and 2.6

terabytes of client data from Panamanian law firm

Mossack Fonseca.

2.	 Chapter Two: Classification Classification encompasses

a set of computational methods for predicting the likeli-

hood that a given sample belongs to a predefined class,

e.g., whether a given piece of email is spam or not. In this

chapter, we examine:

•	 The step-by-step computations performed by the

logistic regression and CART decision tree algorithms

to assign samples to classes.

•	 The differences between supervised and unsuper-

vised learning approaches.

•	 The difference between linear and non-linear

classifiers.

•	 The four phases of a typical supervised learning pro-

cedure, which include model training, validation,

testing, and deployment.

•	 For logistic regression—foundational concepts such

as regression weights, regularization and penalty

parameters, decision boundaries, fitting data, etc.

•	 For decision trees—foundational concepts concern-

ing node types, split variables, benefit scores, and

stopping criteria.

•	 How confusion matrices and metrics such as precision

and recall can be utilized to assess and validate the

accuracy of the models produced by both algorithms.

xviii  Introduction to Artificial Intelligence for Security Professionals

•	 We conclude with a hands-on learning section show-

ing how logistic regression and decision tree models

can be applied to detect botnet command and con-

trol systems that are still in the wild today.

3.	 Chapter Three: Probability In this chapter, we consider

probability as a predictive modeling technique for classi-

fying and clustering samples. Topics include:

•	 The step-by-step computations performed by the

Naïve Bayes (NB) classifier and the Gaussian Mixture

Model (GMM) clustering algorithm.

•	 Foundational concepts, such as trial, outcome, and

event, along with the differences between the joint

and conditional types of probability.

•	 For NB—the role of posterior probability, class prior

probability, predictor prior probability, and likeli-

hood in solving a classification problem.

•	 For GMM—the characteristics of a normal distri-

bution and how each distribution can be uniquely

identified by its mean and variance parameters. We

also consider how GMM uses the two-step expecta-

tion maximization optimization technique to assign

samples to classes.

•	 We conclude with a hands-on learning section show-

ing how NB and GMM models can be applied to detect

spam messages sent via SMS text.

4.	 Chapter Four: Deep Learning This term encompasses a

wide range of learning methods primarily based on the

use of neural networks, a class of algorithms so named

because they simulate the ways densely interconnected

networks of neurons interact in the brain. In this chap-

ter, we consider how two types of neural networks can be

applied to solve a classification problem. This includes:

Artificial Intelligence: The Way Forward in Information Security  xix

•	 The step-by-step computations performed by the

Long Short-Term Memory (LSTM) and Convolutional

(CNN) types of neural networks.

•	 Foundational concepts, such as nodes, hidden layers,

hidden states, activation functions, context, learning

rates, dropout regularization, and increasing levels of

abstraction.

•	 The differences between feedforward and recurrent

neural network architectures and the significance of

incorporating fully-connected vs. partially-connected

layers.

•	 We conclude with a hands-on learning section show-

ing how LSTM and CNN models can be applied to

determine the length of the XOR key used to obfus-

cate a sample of text.

We strongly believe there’s no substitute for practical expe-

rience. Consequently, we’re making all the scripts and datasets

we demonstrate in the hands-on learning sections available for

download at:

https://www.cylance.com/intro-to-ai

For simplicity, all of these scripts have been hard-coded

with settings we know to be useful. However, we suggest you

experiment by modifying these scripts—and creating new ones

too—so you can fully appreciate how flexible and versatile these

methods truly are.

More importantly, we strongly encourage you to consider

how machine learning can be employed to address the kinds of

security problems you most commonly encounter at your own

workplace.

1

Clustering
Using the K-Means and DBSCAN
Algorithms

1

The purpose of cluster analysis is to segregate data into

a set of discrete groups or clusters based on similarities among

their key features or attributes. Within a given cluster, data items

will be more similar to one another than they are to data items

within a different cluster. A variety of statistical, artifi cial intel-

ligence, and machine learning techniques can be used to create

these clusters, with the specifi c algorithm applied determined

by the nature of the data and the goals of the analyst.

Although cluster analysis fi rst emerged roughly eighty-fi ve

years ago in the social sciences, it has proven to be a robust

and broadly applicable method of exploring data and extracting

meaningful insights. Retail businesses of all stripes, for example,

have famously used cluster analysis to segment their customers

into groups with similar buying habits by analyzing terabytes

of transaction records stored in vast data warehouses. Retailers

can use the resulting customer segmentation models to make

2  Introduction to Artificial Intelligence for Security Professionals

personalized upsell and cross-sell offers that have a much higher

likelihood of being accepted. Clustering is also used frequently in

combination with other analytical techniques in tasks as diverse

as pattern recognition, analyzing research data, classifying

documents, and—here at Cylance—in detecting and blocking

malware before it can execute.

In the network security domain, cluster analysis typically

proceeds through a well-defined series of data preparation and

analysis operations. At the end of this chapter, you’ll find links

to a Cylance website with data and instructions for stepping

through this same procedure on your own.

Step 1: Data Selection and Sampling
Before we start with any machine learning approach, we need

to start with some data. Ideally, we might wish to subject all of

our network operations and system data to analysis to ensure our

results accurately reflect our network and computing environ-

ment. Often, however, this is neither possible nor practical due to

the sheer volume of the data and the difficulty in collecting and

consolidating data distributed across heterogeneous systems and

data sources. Consequently, we typically apply statistical sam-

pling techniques that allow us to create a more manageable subset

of the data for our analysis. The sample should reflect the charac-

teristics of the total dataset as closely as possible, or the accuracy

of our results may be compromised. For example, if we decided to

analyze Internet activity for ten different computers, our sample

should include representative log entries from all ten systems.

Step 2: Feature Extraction
In this stage, we decide which data elements within our samples

should be extracted and subjected to analysis. In machine learn-

ing, we refer to these data elements as “features,” i.e., attributes

Clustering Using the K-Means and DBSCAN Algorithms  3

or properties of the data that can be analyzed to produce useful

insights.

In facial recognition analysis, for example, the relevant fea-

tures would likely include the shape, size and configuration of

the eyes, nose, and mouth. In the security domain, the relevant

features might include the percentage of ports that are open,

closed, or filtered, the application running on each of these

ports, and the application version numbers. If we’re investigat-

ing the possibility of data exfiltration, we might want to include

features for bandwidth utilization and login times.

Typically, we have thousands of features to choose from.

However, each feature we add increases the load on the proces-

sor and the time it takes to complete our analysis. Therefore,

it’s good practice to include as many features as we need while

excluding those that we know to be irrelevant based on our

prior experience interpreting such data and our overall domain

expertise. Statistical measures can also be used to automatically

remove useless or unimportant features.

Step 3: Feature Encoding and Vectorization
Most machine learning algorithms require data to be encoded or

represented in some mathematical fashion. One very common

way data can be encoded is by mapping each sample and its set

of features to a grid of rows and columns. Once structured in

this way, each sample is referred to as a “vector.” The entire set

of rows and columns is referred to as a “matrix.” The encoding

process we use depends on whether the data representing each

feature is continuous, categorical, or of some other type.

Data that is continuous can occupy any one of an infinite

number of values within a range of values. For example, CPU

utilization can range from 0 to 100 percent. Thus, we could

4  Introduction to Artificial Intelligence for Security Professionals

represent the average CPU usage for a server over an hour as a

set of simple vectors as shown below.

Sample (Hour) CPU Utilization %
2 AM 12
9 AM 76
1 PM 82
6 PM 20

Unlike continuous data, categorical data is typically rep-

resented by a small set of permissible values within a much

more limited range. Software name and release number are two

good examples. Categorical data is inherently useful in defining

groups. For example, we can use categorical features such as

the operating system and version number to identify a group of

systems with similar characteristics.

Categories like these must be encoded as numbers before

they can be subjected to mathematical analysis. One way to

do this is to create a space within each vector to accommodate

every permissible data value that maps to a category along with

a flag within each space to indicate whether that value is pres-

ent or not. For example, if we have three servers running one of

three different versions of Linux, we might encode the operating

system feature as follows:

Host Ubuntu
Red Hat Enterprise

Linux
SUSE Linux Enterprise

Server
A 1 0 0
B 0 1 0
C 0 0 1

As we can see, Host A is running Ubuntu while Hosts B and

C are running Red Hat and SUSE versions of Linux respectively.

Clustering Using the K-Means and DBSCAN Algorithms  5

Alternately, we can assign a value to each operating system

and vectorize our hosts accordingly:

Operating System
Assigned

Value Host Vector
Ubuntu 1 A 1

Red Hat Enterprise Linux 2 B 2
SUSE Linux Enterprise Server 3 C 3

However, we must be careful to avoid arbitrary mappings

that may cause a machine learning operation, such as a clus-

tering algorithm, to mistakenly infer meaning to these values

where none actually exists. For example, using the mappings

above, an algorithm might learn that Ubuntu is “less than” Red

Hat because 1 is less than 2 or reach the opposite conclusion if

the values were reversed. In practice, analysts use a somewhat

more complicated encoding method that is often referred to as

“one-hot encoding.”

In many cases, continuous and categorical data are used in

combination. For example, we might include a set of continuous

features (e.g., the percentage of open, closed, and filtered ports)

in combination with a set of categorical features (e.g., the oper-

ating system and the services running on each port) to identify a

group of nodes with similar risk profiles. In situations like these,

it’s often necessary to compress the range of values in the con-

tinuous vectors through a process of “normalization” to ensure

that the features within each vector are given equal weight. The

k-means algorithm, for example, uses the average distance from

a central point to group vectors by similarity. Without normal-

ization, k-means may overweigh the effects of the categorical

data and skew the results accordingly.

6  Introduction to Artificial Intelligence for Security Professionals

Let’s consider the following example:

Sample (Server) Requests per Second CPU Utilization %
Alpha 200 67
Bravo 160 69
Charlie 120 60
Delta 240 72

Here, the values of the Requests per Second feature have

a range ten times larger than those of the CPU Utilization %

feature. If these values were not normalized, the distance cal-

culation would likely be skewed to overemphasize the effects of

this range disparity.

In the chart below, for example, we can see that the differ-

ence between server Alpha and server Bravo with respect to

Requests per Second is 40, while the difference between the

servers with respect to CPU Utilization % is only 2. In this case,

Requests per Second accounts for 95% of the difference between

the servers, a disparity that might strongly skew the subsequent

distance calculations.

We’ll address this skewing problem by normalizing both fea-

tures to the 0-1 range using the formula: x-xmin / xmax – xmin.

Sample (Name) Requests per Second CPU Utilization %
Alpha .66 .58
Bravo .33 .75
Charlie 0 0
Delta 1 1

After normalizing, the difference in Requests per Second

between servers Alpha and Bravo is .33, while the difference in

CPU Utilization % has been reduced to 17. Requests per Second

now accounts for only 66% of the difference.

Clustering Using the K-Means and DBSCAN Algorithms  7

Step 4: Computation and Graphing
Once we finish converting features to vectors, we’re ready to

import the results into a suitable statistical analysis or data

mining application such as IBM SPSS Modeler and SAS Data

Mining Solution. Alternately we can utilize one of the hundreds

of software libraries available to perform such analysis. In the

examples that follow, we’ll be using scikit-learn, a library of free,

open source data mining and statistical functions built in the

Python programming language.

Once the data is loaded, we can choose which clustering

algorithm to apply first. In scikit-learn, for example, our options

include k-means, Affinity Propagation, Mean-Shift, Spectral

Clustering, Ward Hierarchical Clustering, Agglomerative

Clustering, DBSCAN, Gaussian Mixtures, and Birch. Let’s con-

sider two of the most popular clustering algorithms, k-means

and DBSCAN.

Clustering with K-Means

As humans, we experience the world as consisting of three

spatial dimensions, which allows us to determine the distance

between any two objects by measuring the length of the shortest

straight line connecting them. This “Euclidean distance” is what

we compute when we utilize the Pythagorean Theorem.

Clustering analysis introduces the concept of a “feature

space” that can contain thousands of dimensions, one each for

every feature in our sample set. Clustering algorithms assign

vectors to particular coordinates in this feature space and then

measure the distance between any two vectors to determine

whether they are sufficiently similar to be grouped together

in the same cluster. As we shall see, clustering algorithms

can employ a variety of distance metrics to do so. However,

k-means utilizes Euclidean distance alone. In k-means, and

8  Introduction to Artificial Intelligence for Security Professionals

most other clustering algorithms, the smaller the Euclidean

distance between two vectors, the more likely they are to be

assigned to the same cluster.

Feature 1

V1

V2

V3

Near

FarFe
at

ur
e

2

FIGURE 1.1:� Vectors in Feature Space

K-Means is computationally efficient and broadly applicable

to a wide range of data analysis operations, albeit with a few

caveats:

•	 The version of k-means we’ll be discussing works with

continuous data only. (More sophisticated versions work

with categorical data as well.)

•	 The underlying patterns within the data must allow for

clusters to be defined by carving up feature space into

regions using straight lines and planes.

•	 The data can be meaningfully grouped into a set of simi-

larly sized clusters.

If these conditions are met, the clustering session proceeds

as follows:

1.	 A dataset is sampled, vectorized, normalized, and then

imported into scikit- learn.

Clustering Using the K-Means and DBSCAN Algorithms  9

2.	 The data analyst invokes the k-means algorithm and

specifies “k,” an input variable or “hyperparameter” that

tells k-means how many clusters to create. (Note: Almost

every algorithm includes one or more hyperparameters

for “tuning” the algorithm’s behavior.) In this example,

k will be set to three so that, at most, three clusters are

created.

3.	 K-Means randomly selects three vectors from the data-

set and assigns each of them to a coordinate in feature

space, one for each of the three clusters to be created.

These points are referred to as “centroids.”

4.	 K-Means begins processing the first vector in the dataset

by calculating the Euclidean distance between its coordi-

nates and the coordinates of each of the three centroids.

Then, it assigns the sample to the cluster with the nearest

centroid. This process continues until all of the vectors

have been assigned in this way.

5.	 K-Means examines the members of each cluster and

computes their average distance from their correspond-

ing centroid. If the centroid’s current location matches

this computed average, it remains stationary. Otherwise,

the centroid is moved to a new coordinate that matches

the computed average.

6.	 K-Means repeats step four for all of the vectors and

reassigns them to clusters based on the new centroid

locations.

7.	 K-Means iterates through steps 5-6 until one of the fol-

lowing occurs:

•	 The centroid stops moving and its membership

remains fixed, a state known as “convergence.”

•	 The algorithm completes the maximum number of

iterations specified in advance by the analyst.

10  Introduction to Artificial Intelligence for Security Professionals

FIGURE 1.2:� K-Means Clustering Process

Once clustering is complete, the data analyst can:

•	 Evaluate the accuracy of the results using a variety of

validation techniques.

•	 Convert the results into a mathematical model to assess

the cluster membership of new samples.

•	 Analyze the cluster results further using additional sta-

tistical and machine learning techniques.

Clustering Using the K-Means and DBSCAN Algorithms  11

This same process applies with higher dimensional feature

spaces too—those containing hundreds or even thousands of

dimensions. However, the computing time for each iteration

will increase in proportion to the number of dimensions to be

analyzed.

K-MEANS PITFALLS AND LIMITATIONS
While it’s easy to use and can produce excellent results, the

version of k-means we have been discussing is vulnerable to a

variety of errors and distortions:

The analyst must make an informed guess at the outset

concerning how many clusters should be created. This takes

considerable experience and domain expertise. In practice, it’s

often necessary to repeat the clustering operation multiple times

until the optimum number of clusters has been identified.

The clustering results may vary dramatically depending

on where the centroids are initially placed. The analyst has no

control over this since this version of k-means assigns these

locations randomly. Again, the analyst may have to run the clus-

tering procedure multiple times and then select the clustering

results that are most useful and consistent with the data.

Euclidean distance breaks down as a measure of similar-

ity in very high dimensional feature spaces. This is one of the

issues machine learning experts refer to with the umbrella term,

“the curse of dimensionality.” In these situations, different algo-

rithms and methods of measuring similarity must be employed.

Clustering with DBSCAN

Another commonly used clustering algorithm is DBSCAN or

“Density-Based Spatial Clustering of Applications with Noise.”

DBSCAN was first introduced in 1996 by Hans-Peter Kriegel.

12  Introduction to Artificial Intelligence for Security Professionals

As the name implies, DBSCAN identifies clusters by evaluat-

ing the density of points within a given region of feature space.

DBSCAN constructs clusters in regions where vectors are most

densely packed and considers points in sparser regions to be

noise.

In contrast to k-means, DBSCAN:

•	 Discovers for itself how many clusters to create rather

than requiring the analyst to specify this in advance with

the hyperparameter k.

•	 Is able to construct clusters of virtually any shape and

size.

DBSCAN presents the analyst with two hyperparameters

that determine how the clustering process proceeds:

•	 Epsilon (Eps) specifies the radius of the circular region

surrounding each point that will be used to evaluate its

cluster membership. This circular region is referred to as

the point’s “Epsilon Neighborhood.” The radius can be

specified using a variety of distance metrics.

•	 Minimum Points (MinPts) specifies the minimum number

of points that must appear within an Epsilon neighbor-

hood for the points inside to be included in a cluster.

DBSCAN performs clustering by examining each point in the

dataset and then assigning it to one of three categories:

•	 A core point is a point that has more than the specified

number of MinPts within its Epsilon neighborhood.

•	 A border point is one that falls within a core point’s

neighborhood but has insufficient neighbors of its own to

qualify as a core point.

•	 A noise point is one that is neither a core point nor a

border point.

Clustering Using the K-Means and DBSCAN Algorithms  13

Examples of core, border, and noise points are shown below:

FIGURE 1.3:� DBSCAN Clustering Process

A DBSCAN clustering session in scikit-learn typically pro-

ceeds as follows:

1.	 A dataset is sampled, vectorized, normalized, and then

imported into scikit-learn.

2.	 The analyst builds a DBSCAN object and specifies the

initial Eps and MinPts values.

3.	 DBSCAN randomly selects one of the points in the fea-

ture space, e.g., Point A, and then counts the number

of points—including Point A—that lie within Point A’s

Eps neighborhood. If this number is equal to or greater

than MinPts, then the point is classified as a core point

and DBSCAN adds Point A and its neighbors to a new

cluster. To distinguish it from existing clusters, the new

cluster is assigned a cluster ID.

14  Introduction to Artificial Intelligence for Security Professionals

4.	 DBSCAN moves from Point A to one of its neighbors, e.g.,

Point B, and then classifies it as either a core or border

point. If Point B qualifies as a core point then Point B and

its neighbors are added to the cluster and assigned the

same Cluster ID. This process continues until DBSCAN

has visited all of the neighbors and detected all of that

cluster’s core and border points.

5.	 DBSCAN moves on to a point that it has not visited before

and repeats steps 3 and 4 until all of the neighbor and

noise points have been categorized. When this process

concludes, all of the clusters have been identified and

issued cluster IDs.

If the results of this analysis are satisfactory, the clustering

session ends. If not, the analyst has a number of options. They

can tune the Eps and MinPts hyperparameters and run DBSCAN

again until the results meet their expectations. Alternately, they

can redefine how the Eps hyperparameter functions in defin-

ing Eps neighborhoods by applying a different distance metric.

DBSCAN supports several different ones, including:

•	 Euclidean Distance This is the “shortest straight-line

between points” method we described earlier.

•	 Manhattan or City Block Distance As the name implies,

this method is similar to one we might use in measuring

the distance between two locations in a large city laid out

in a two-dimensional grid of streets and avenues. Here,

we are restricted to moving along one dimension at a

time, navigating via a series of left and right turns around

corners until we reach our destination. For example, if

we are walking in Manhattan from Third Avenue and 51st

Street to Second Avenue and 59th Street, we must travel

one block east and then eight blocks north to reach our

Clustering Using the K-Means and DBSCAN Algorithms  15

destination, for a total Manhattan distance of nine blocks.

In much the same way, DBSCAN can compute the size of

the Eps neighborhood and the distance between points

by treating feature space as a multi-dimensional grid that

can only be traversed one dimension at a time. Here, the

distance between points is calculated by summing the

number of units along each axis that must be traversed

to move from Point A to Point B.

•	 Cosine Similarity In cluster analysis, similarity in fea-

tures is represented by relative distance in feature space.

The closer two vectors are to one another, the more likely

they are to live within the same Eps neighborhood and

share the same cluster membership. However, distance

between two vectors can also be defined by treating each

vector as the vertex of a triangle with the third vertex

located at the graph’s origin point. In this scenario, dis-

tance is calculated by computing the cosine for the angle

formed by the lines connecting the two vectors to the

origin point. The smaller the angle, the more likely the

two points are to have similar features and live in the

same Eps neighborhood. Likewise, the larger the angle,

the more likely they are to have dissimilar features and

belong to different clusters.

16  Introduction to Artificial Intelligence for Security Professionals

FIGURE 1.4:� Euclidean, Manhattan, and Cosine Distances

DBSCAN PITFALLS AND LIMITATIONS
While it can discover a wider variety of cluster shapes and sizes

than k-means, DBSCAN:

•	 Is extremely sensitive to even small changes in MinPts

and Eps settings, causing it to fracture well-defined clus-

ters into collections of small cluster fragments.

•	 Becomes less computationally efficient as more dimen-

sions are added, resulting in unacceptable performance

in extremely high dimensional feature spaces.

•	 Performs poorly with datasets that result in regions of

varying densities due to the fixed values that must be

assigned to MinPts and Eps.

Clustering Using the K-Means and DBSCAN Algorithms  17

FIGURE 1.5:� DBSCAN Cluster Density Pitfall

Assessing Cluster Validity

At the conclusion of every clustering procedure, we’re presented

with a solution consisting of a set of k clusters. But how are we

to assess whether these clusters are accurate representations of

the underlying data? The problem is compounded when we run

a clustering operation multiple times with different algorithms

or the same algorithm multiple times with different hyperpa-

rameter settings.

18  Introduction to Artificial Intelligence for Security Professionals

Fortunately, there are numerous ways to validate the

integrity of our clusters. These are referred to as “indices” or

“validation criteria.” For example, we can:

•	 Run our sample set through an external model and see if

the resulting cluster assignments match our own.

•	 Test our results with “hold out data,” i.e., vectors from

our dataset that we didn’t use for our cluster analysis. If

our cluster results are correct, we would expect the new

samples to be assigned to the same clusters as our origi-

nal data.

•	 Use statistical methods. With k-means, for example, we

might calculate a Silhouette Coefficient, which com-

pares the average distance between points that lie within

a given cluster to the average distance between points

assigned to different clusters. The lower the coefficient,

the more confident we can be that our clustering results

are accurate.

•	 Compare the clustering results produced by differ-

ent algorithms or by the same algorithm using different

hyperparameter settings. For example, we might calcu-

late the Silhouette Coefficients for k-means and DBSCAN

to see which algorithm has produced the best results, or

compare results from DBSCAN runs that utilized different

values for Eps.

Cluster Analysis Applied to Real-World Threat Scenarios

As we’ve seen, cluster analysis enables us to examine large

quantities of network operations and system data in order to

detect hidden relationships among cluster members based on

the similarities and differences among the features that define

them. But, how do we put these analytical capabilities to work in

Clustering Using the K-Means and DBSCAN Algorithms  19

detecting and preventing real-world network attacks? Let’s con-

sider how cluster analysis might have been useful with respect

to the Panama Papers breach, which resulted in the exfiltration

of some 11.5 million confidential documents and 2.6 terabytes

of client data from Panamanian law firm Mossack Fonseca (MF).

We begin with three caveats:

•	 Although compelling evidence has been presented by

various media and security organizations concerning the

most likely attack vectors, no one can say with certainty

how hacker “John Doe” managed to penetrate MF’s web

server, email server, and client databases over the course

of a year or more. We would have to subject MF’s network

and system data to an in-depth course of forensic analy-

sis to confirm the nature and extent of these exploits.

•	 This data would have to be of sufficient scope and quality

to support the variety of data-intensive methods we com-

monly employ in detecting and preventing attacks.

•	 Our analysis would not be limited to clustering alone.

Ideally, we would employ a variety of machine learning,

artificial intelligence, and statistical methods in combi-

nation with clustering.

For now, however, we’ll proceed with a clustering-only sce-

nario based on the evidence presented by credible media and

industry sources.

According to software engineering firm Wordfence8, for

example, hacker “John Doe” might have begun by targeting

known vulnerabilities in the WordPress Revolution Slider plugin

8.	� Mark Maunder, “Panama Papers: Email Hackable via WordPress, Docs Hackable
via Drupal” (April 8, 2016), accessed May 15, 2016 from https://www.wordfence.
com/blog/2016/04/panama-papers-wordpress-email-connection/. Also see Mark
Maunder, “Mossack Fonseca Breach—WordPress Revolution Slider Plugin Possible
Cause” (April 7, 2016), accessed May 15, 2016 from https://www.wordfence.com/
blog/2016/04/mossack-fonseca-breach-vulnerable-slider-revolution/.

20  Introduction to Artificial Intelligence for Security Professionals

that had been documented on the Exploit Database Website in

November 2014. John Doe could have exploited this vulnera-

bility to upload a PHP script to the WordPress Web Server. This

would have provided him with shell access and the ability to

view server files such as wp-config.php, which stores WordPress

database credentials in clear text. With access to the database,

he would also have been able to capture all of the email account

credentials stored there in clear text by the ALO EasyMail

Newsletter plugin, which MF used for its email list management

capabilities. Collectively, these and other mail server hacks

would have enabled John Doe to access and exfiltrate huge

quantities of MF emails.

Forbes Magazine9 has also reported that, at the time of the

attack, MF was running Drupal version 7.23 to manage the

“secure” portal that clients used to access their private doc-

uments. This version was widely known to be vulnerable to a

variety of attacks, including an SQL injection exploit that alone

would have been sufficient to open the floodgates for a mass

document exfiltration.

Based on this and other information, we find it likely that

cluster analysis—pursued as part of an ongoing hunting pro-

gram—could have detected anomalies in MF’s network activity

and provided important clues about the nature and extent of

John Doe’s attacks. Normally, hunt team members would ana-

lyze the web and mail server logs separately. Then, if an attack

on one of the servers was detected, the hunt team could analyze

data from the other server to see if the same bad actors might

be involved in both sets of attacks and what this might indicate

about the extent of the damage.

9.	� Jason Bloomberg, “Cybersecurity Lessons Learned from ‘Panama
Papers’ Breach,” Forbes.com (April, 2016), http://www.forbes.com/sites/
jasonbloomberg/2016/04/21/cybersecurity-lessons-learned-from-panama-papers-
breach/#47c9045d4f7a

Clustering Using the K-Means and DBSCAN Algorithms  21

On the mail server side, the relevant features to be extracted

might include user login time and date, IP address, geographic

location, email client, administrative privileges, and SMTP

server activity. On the web server side, the relevant features

might include user IP address and location, browser version, the

path of the pages being accessed, the web server status codes,

and the associated bandwidth utilization.

After completing this cluster analysis, we would expect to see

the vast majority of the resulting email and web vectors grouped

into a set of well-defined clusters that reflect normal operational

patterns and a smaller number of very sparse clusters or noise

points that indicate anomalous user and network activity. We

could then probe these anomalies further by grepping through

our log data to match this suspect activity to possible bad actors

via their IP addresses.

This analysis could reveal:

•	 Anomalous authentication patterns. We might wonder

why a cluster of MF executives based in our London office

suddenly began accessing their email accounts with an

email client they have never used before. Alternately, we

might observe a group of employees based in our London

office periodically accessing their email accounts from

locations where we have no offices, clients, or business

partners.

•	 Anomalous user behavior. We might identify clusters of

clients who log in and then spend long hours download-

ing large quantities of documents without uploading any.

Alternately, we might find clusters of email users spend-

ing long hours reading emails but never sending any.

•	 Anomalous network traffic patterns. We might observe

a sharp spike in the volume of traffic targeting the client

22  Introduction to Artificial Intelligence for Security Professionals

portal page and other URLs that include Drupal in their

path statements.

Of course, these examples are hypothetical only. The degree

to which clustering analysis might signal an attack like the

Panama Papers breach would be determined by the actual con-

tent of the network and system data and the expertise of the

data analysts on the hunt team. However, it’s clear that clus-

ter analysis can provide important clues concerning a security

breach that would be difficult to tease out from among the many

thousands of log entries typically generated each week on a mid-

sized network. What’s more, these insights could be drawn from

the data itself without reliance on exploit signatures or alerts

from an IDS/IPS system.

Clustering Session Utilizing HTTP Log Data

Let’s apply what we’ve learned to see how clustering can be used

in a real-world scenario to reveal an attack and track its prog-

ress. In this case, we’ll be analyzing HTTP server log data from

secrepo.com that will reveal several exploits similar to those that

preceded the Panama Papers exfiltration. If you’d like to try this

exercise out for yourself, please visit https://www.cylance.com/

intro-to-ai, where you’ll be able to download all of the pertinent

instructions and data files.

HTTP server logs capture a variety of useful forensic data

about end-users and their Internet access patterns. This includes

IP addresses, time/date stamps, what was requested, how the

server responded, and so forth. In this example, we’ll cluster IP

addresses based on the HTTP verbs (e.g., GET, POST, etc.) and

HTTP response codes (e.g., 200, 404, etc.). We’ll be hunting for

evidence of a potential breach after receiving information from a

WAF or threat intelligence feed that the IP address 70.32.104.50

Clustering Using the K-Means and DBSCAN Algorithms  23

has been associated with attacks targeting WordPress servers. We

might be especially concerned if a serious WordPress vulnerabil-

ity, such as the Revolution Slider, had recently been reported.

Therefore, we’ll cluster IP addresses to detect behavior patterns

similar to those reported for 70.32.104.50 that might indicate

our own servers have been compromised.

The HTTP response codes used for this specific dataset are

as follows:

200, 404, 304, 301, 206, 418, 416, 403, 405, 503, 500

 The HTTP verbs for this specific dataset are as follows:

GET, POST, HEAD, OPTIONS, PUT, TRACE

We’ll run our clustering procedure twice, once with k-means

and then a second time with DBSCAN. We’ll conclude each pro-

cedure by returning to our log files and closely examining the

behavior of IP addresses that appear as outliers or members of a

suspect cluster.

CLUSTER ANALYSIS WITH K-MEANS
Step 1: Vectorization and Normalization
We begin by preparing our log samples for analysis. We’ll take

a bit of a shortcut here and apply a script written expressly to

vectorize and normalize this particular dataset.

For each IP address, we’ll count the number of HTTP response

codes and verbs. Rather than simply adding up the number of

occurrences, however, we’ll represent these features as contin-

uous values by normalizing them. If we didn’t do this, two IPs

with nearly identical behavior patterns might be clustered dif-

ferently simply because one made more requests than the other.

Given enough time and CPU power, we could examine all

16,407 IP addresses in our log file of more than 181,332 entries.

24  Introduction to Artificial Intelligence for Security Professionals

However, we’ll begin with the first 10,000 IP addresses instead

and see if this sample is sufficient for us to determine whether

an attack has taken place. We’ll also limit our sample to IP

addresses associated with at least five log entries each. Those

with sparser activity are unlikely to present a serious threat to

our web and WordPress servers.

The following Python script will invoke the vectorization

process:

`python vectorize_secrepo.py`

This produces “secrepo.h5,” a Hierarchical Data Format

(HDF5) file that contains our vectors along with a set of cluster

IDs and “notes” that indicate which IP address is associated with

each vector. We’ll use these addresses later when we return to

our logs to investigate potentially malicious activity.

Step 2: Graphing Our Vectors
We’re ready now to visualize our vectors in feature space.

Humans cannot visualize spatial environments that exceed

three dimensions. This makes it difficult for the analyst to inter-

pret clustering results obtained in high dimensional feature

spaces. Fortunately, we can apply feature reduction techniques

that enable us to view our clusters in a three-dimensional graph-

ical format. The script below applies one of these techniques,

Principal Component Analysis. Now, we will be able to explore

the clusters by rotating the graph along any of its three axes.

However, rotation is a computationally-intensive process that

can cause the display to refresh sluggishly. Often, it’s faster and

more convenient to prepare several viewing angles in advance

during the graphing process. Subsequently, we can toggle quickly

Clustering Using the K-Means and DBSCAN Algorithms  25

between each of the prepared views to view our clusters from

different angles.

We’ll use the following script to visualize our vectors:

`python visualize_vectors.py -i secrepo.h5`

FIGURE 1.6:� Projected Visualization of Our Vectors

Step 3: First Pass Clustering with K-Means
As noted earlier, k-means only requires us to set the hyperpa-

rameter k, which specifies how many clusters to create. We won’t

know initially what the correct value of k should be. Therefore,

we’ll proceed through the clustering process iteratively, setting

different k values and inspecting the results until we’re satisfied

we’ve accurately modeled the data. We’ll begin by setting k to

“2.” We’ll also instruct k-means to use the cluster IDs we speci-

fied during vectorization to name each cluster:

`python cluster_vectors.py -c kmeans -n 2 -i secrepo.h5 -o
secrepo.h5`

26  Introduction to Artificial Intelligence for Security Professionals

As shown below, k-means has analyzed our samples, applied

our labels, and computed the number of vectors that will be

placed in each of our two clusters.

Step 4: Validating Our Clusters Statistically
Now that we have the cluster IDs, we can determine how well

our samples have been grouped by applying Silhouette Scoring.

The scores will range from -1 to +1. The closer the scores are to

+1, the more confident we can be that our grouping is accurate.

We’ll produce the Silhouette Scores with the following script:

stats_vectors.py

As we can see, Cluster 1 is well-grouped while Cluster 0 is

not. We also notice that Cluster 1 contains many more samples

than Cluster 0. We can interpret this to mean that Cluster 1

reflects normal network activity while Cluster 0 contains less

typical and possibly malicious user behavior.

Step 5: Inspecting Our Clusters
We can now interrogate our clusters to see which one contains

the IP address of our known bad actor. We’ll use the following

script to print out the labels and notes for each of our vectors.

Clustering Using the K-Means and DBSCAN Algorithms  27

`python label_notes.py -i secrepo.h5 | grep 70.32.104.50`

We can now see that IP 70.32.104.50 is a member of Cluster

0—our suspect cluster—and the one with the lower average sil-

houette score. Given this result, we might consider subjecting

all of Cluster 0’s members to forensic analysis. However, human

capital is expensive and investigating all of these IPs would be

inefficient. Therefore, it makes better sense for us to focus on

improving our clustering results first so we have fewer samples

to investigate.

Step 6: Modifying K to Optimize Cluster Results
Generally speaking, it makes sense to start a k-means cluster-

ing session with k set to construct at least two clusters. After

that, you can iterate higher values of k until your clusters are

well formed and validated to accurately reflect the distribution

of samples. In this case, we performed steps three and four mul-

tiple times until we finally determined that 12 was the optimal

number for this dataset.

We’ll go ahead and generate these 12 clusters with the fol-

lowing script:

`python cluster_vectors.py -c kmeans -n 12 -i secrepo.h5 -o
secrepo.h5`

28  Introduction to Artificial Intelligence for Security Professionals

Step 7: Repeating Our Inspection and Validation Procedures
Once again, we’ll run a script to extract the ID for the cluster

that now contains the malicious IP:

`python label_notes.py -i secrepo.h5 | grep 70.32.104.50`

As we can see, the malicious IP is a member of Cluster 6.

Let’s validate this cluster using Silhouette Scoring:

`python stats_vectors.py secrepo.h5`

Clustering Using the K-Means and DBSCAN Algorithms  29

As we can see, Cluster 6 has a high Silhouette Score,

indicating that all of the members are highly similar to one

another and to the IP we knew at the outset to be malicious.

Our next step should be to see what these IP addresses have

been doing by tracking their activity in our web server logs. We’ll

begin by printing out all of the samples in Cluster 6 using the

following command:

`python label_notes.py -i secrepo.h5 -l <label>`

30  Introduction to Artificial Intelligence for Security Professionals

Now, we can use the grep command to search through our

logs and display entries in which these IP addresses appear. We’ll

start with our known bad IP:

`grep -ar 70.32.104.50 datasets/http/secrepo/www.secrepo.com/
self.logs/`

As we can see, this IP has been attempting to exploit remote

file inclusion vulnerabilities to install a PHP script payload. Now

let’s try another member of the suspect cluster:

`grep -ar 49.50.76.8 datasets/http/secrepo/www.secrepo.com/
self.logs/`

Clustering Using the K-Means and DBSCAN Algorithms  31

This IP too has been acting with malicious intent. We’ll want

to repeat this step until we have examined all of the Cluster 6

members and completed our forensic analysis.

CLUSTER ANALYSIS WITH DBSCAN
Since we’ve already created the secrepo.h5 file for our k-means

example, we’ll skip ahead to Step 3 and begin our first-pass clus-

tering session with DBSCAN. We’ll start by setting the Eps and

MinPts hyperparameters to 0.5 and 5 respectively. As noted ear-

lier, DBSCAN doesn’t require us to predict the correct number of

clusters in advance. It will compute the quantity of clusters on

its own based on the density of vectors in feature space and the

minimum cluster size.

To generate these clusters we’ll run the following script:

`python cluster_vectors.py -c dbscan -e 0.5 -m 2 -i secrepo.h5 -o
secrepo.h5`

32  Introduction to Artificial Intelligence for Security Professionals

As we can see, DBSCAN has created 62 clusters and left

854 samples unassigned. Each of these 854 noise points may be

associated with malicious activity. We could return to our logs

now and investigate all of them but this would be time consum-

ing and inefficient. Instead, we’ll increase our Eps setting from

5 to 6. This should produce fewer clusters and also a smaller

quantity of potentially suspect samples.

We’ll apply the new hyperparameter settings with the follow-

ing command:

`python cluster_vectors.py -c dbscan -e 6 -m 5 -i secrepo.h5 -o
secrepo.h5`

This time, DBSCAN generated 11 clusters and only 25 noise

points, a much more manageable number. We’ll skip the clus-

ter inspection and validation steps we described previously for

k-means and jump ahead to begin investigating the behavior of

these 25 suspect samples. We’ll start by listing these samples

with the following command:

Clustering Using the K-Means and DBSCAN Algorithms  33

`python label_notes.py -i secrepo.h5 -l -1`

Now, we can use the following script to grep through our log

files and find out what these IPs have been doing:

`grep -ar 192.187.126.162 datasets/http/secrepo/www.secrepo.
com/self.logs/`

As it turns out, the vast majority of these cluster members

were grouped together due to odd behavior or temporary fail-

ures rather than attempted exploits. However, we did discover

34  Introduction to Artificial Intelligence for Security Professionals

a number of bots probing for vulnerable servers. For example,

192.187.126.162 was probing our servers to determine whether

WordPress or fckeditor were installed. John Doe might have

used bots very much like these to identify Mossack Fonseca as

a vulnerable target. If MF had used clustering to detect these

probes and then patched these vulnerabilities, the Panama

Papers breach might never have occurred.

Clustering Takeaways

As we’ve seen, clustering provides a mathematically rigorous

approach to detecting patterns and relationships among net-

work, application, file, and user data that might be difficult or

impossible to secure in any other way. However, our analytical

story only begins with clustering. In the chapters to come, we’ll

describe some of the other statistical, artificial intelligence, and

machine learning techniques we commonly employ in devel-

oping and deploying our network security solutions. For now,

however, here are your key clustering takeaways:

•	 Cluster analysis can be applied to virtually every kind of

data once the relevant features have been extracted and

normalized.

•	 In cluster analysis, similarity between samples and their

resulting cluster membership is determined by measur-

ing the distance between vectors based on their locations

in feature space. A variety of distance metrics can be

applied, including Euclidean, Manhattan, Cosine, and

more.

•	 K-means and DBSCAN are easy to use, computationally

efficient and broadly applicable to a variety of clustering

scenarios. However, both methods are vulnerable to the

Clustering Using the K-Means and DBSCAN Algorithms  35

“curse of dimensionality” and may not be suitable when

analyzing extremely high dimensional feature spaces.

•	 Clustering results must be statistically validated and also

carefully evaluated with respect to real-world security

threats. This requires a significant amount of domain

expertise and a deep understanding of the capabilities,

pros, and cons of each clustering method.

•	 Clustering is particularly useful in data exploration and

forensic analysis because it allows us to sift through vast

quantities of data to identify outliers and anomalies. We

can also subject our samples and clustering results to

other forms of analysis like those we’ll be exploring in

subsequent chapters.

37

Classification
Using the Logistic Regression and
Decision Tree Algorithms

2

We humans employ a wide variety of cognitive strate-

gies to make sense of the world around us. One of the most useful

is our capacity to assign objects and ideas to discrete categories

based on abstract relationships among their features and char-

acteristics. In many cases, the categories we use are binary ones.

Certain foods are good to eat, others are not. Certain actions

are morally right while others are morally wrong. Categories

like these enable us to make generalizations about objects and

actions we already know about in order to predict the properties

of objects and actions that are entirely new to us.

Presented with an oval object with a yellow skin, a soft inte-

rior, and a sweet and pungent smell, we might draw on our past

knowledge to predict that it belongs to the category “fruit.” We

could test the accuracy of our prediction by bringing the object

to a fruit store. If we found a bin full of similar objects labeled as

“mangos” we could conclude that our prediction was a correct one.

38  Introduction to Artificial Intelligence for Security Professionals

If so, we could generalize from our knowledge of fruit to predict

that the mango has a pleasant taste and offers sound nutritional

benefits. We could then apply this categorical knowledge to

decide whether to eat the mango. This process of assigning an

unknown object to a known category in order to make informed

decisions is what we mean by the term classification.

In machine learning, classification refers to a set of com-

putational methods for predicting the likelihood that a given

sample belongs to a predefined class, like whether a piece of

email belongs to the class “spam” or a network connection is

benign or associated with a botnet. These are examples of a

binary classification problem—for example, one with only two

output classes, “spam” and “not spam,” “botnet” or “benign.” By

convention, samples that possess the attribute we’re investigat-

ing (e.g., that an email is spam) are labeled as belonging to class

“1” while samples that don’t possess this attribute (e.g., mail

that is not spam) are labeled as belonging to class “0.” These 1

and 0 class labels are often referred to as positive and negative

cases respectively.

Classification can also be used with problems in which:

•	 A sample can belong to multiple classes at the same time.

For example, the mango we identified earlier could be

assigned labels corresponding to the classes of fruit, yel-

low, tropical, etc.

•	 We are performing multinomial—rather than binary—

classification. In this case, a sample is assigned to one class

among a set of three or more. For example, we might want

to classify an email sample as either belonging to class 1

(benign), class 2 (spam), or class 3 (a phishing exploit).

For the purposes of this chapter, however, we’ll consider

binary classification problems only.

Classification Using the Logistic Regression and Decision Tree Algorithms  39

The algorithms used to perform classification are referred

to as “classifiers.” There are numerous classifiers available to

solve binary classification problems, each with its own strengths

and weaknesses. In this chapter, we’ll examine the methods

and principles associated with two of the most common classi-

fiers—logistic regression and decision trees—as provided in the

scikit-learn toolkit.

Supervised Vs. Unsupervised Learning

Classification is an example of supervised learning, in which

an analyst builds a model with samples that have already been

identified—or labeled—with respect to the property under

investigation. In the case of spam, for example, the analyst

builds a classification model using a dataset of samples that

have already been labeled as either spam (the positive case)

or not spam (the negative case). Here, the job of the classifier

is to ascertain how the feature attributes of each class can be

used to predict the class of new, unlabeled samples. In contrast,

clustering is an example of unsupervised learning, in which the

properties that distinguish one group of samples from another

must be discovered.

It’s not uncommon to use unsupervised and supervised

methods in combination. For example, clustering can be

used to segregate network traffic vectors into distinct groups.

Then, members of the forensic team can investigate members

of suspect clusters to see if they have performed some kind of

undesirable network activity. If so, the vectors associated with

this activity can be labeled as belonging to class 1 (e.g., as botnet

traffic) while all of the other vectors can be labeled as class 0

(e.g., as benign activity). Once labeled, the vectors can be used

by a classifier to construct a model that predicts whether a new

unlabeled vector is benign or a member of a bot network.

40  Introduction to Artificial Intelligence for Security Professionals

To produce an accurate model, analysts need to secure

a sufficient quantity of data that has been correctly sampled,

vectorized, and labeled. This data is then typically divided into

two or three distinct sets for training, validation, and testing.

Splitting into three sets is preferable when there is sufficient

data available. In either case, the training set is typically the

largest subset, comprising between 70-90% of the total samples.

As a rule of thumb, the larger the training set, the more likely

the classifier is to produce an accurate model. However, enough

testing data must always be retained to conduct a reliable assess-

ment of the model’s accuracy.

A classification session typically proceeds through four

phases:

1.	 A training or “learning” phase in which the analyst con-

structs a model by applying a classifier to a set of training

data. The training set consists of two files: a matrix of

sample data and a vector of labels (one label for each row

in the matrix). Both the logistic regression and decision

tree algorithms provide a set of hyperparameters that the

analyst can tune to control how the resulting models are

built.

2.	 A validation phase in which the analyst applies the val-

idation data to the model in order to assess its accuracy

and utilizes various procedures for optimizing the algo-

rithm’s hyperparameter settings. To learn about these

optimization methods, please refer to the links provided

in the resources section at the end of this chapter.

3.	 A testing phase to assess the model’s accuracy with test

data that was withheld from the training and validation

processes. The analyst runs the test vectors through the

model and then compares each test sample’s predicted

class membership to its actual class membership. If the

Classification Using the Logistic Regression and Decision Tree Algorithms  41

results meet the required accuracy and performance

thresholds, the analyst can proceed to the deployment

phase. Otherwise, they can return to the training phase

to refine and rebuild the model.

4.	 A deployment phase, in which the model is applied to

predict the class membership of new, unlabeled data.

In practice, an analyst may train and test multiple models

using different algorithms and hyperparameter settings. Then,

they can compare the models and choose the one that offers the

optimal combination of accuracy as well as the most efficient

use of computing resources.

Please note: The methods used to assess model accuracy

during the testing phase are substantially similar to those typ-

ically applied during the validation phase. As noted earlier,

conducting a separate validation stage—although desirable—is

only feasible when enough data is available to create adequate-

ly-sized training, validation, and subset testing. For simplicity,

therefore, we’ll omit further references to the validation phase

and reserve our discussion of model assessment to the chapter

section on testing. In addition, since the datasets in our own

hands-on examples are relatively small, we’ll show the training

and testing procedures only.

Classification Challenges

Classifiers can often produce excellent results under favorable

conditions. However, this is not always the case. For example:

•	 It can be extremely difficult for analysts to obtain a suffi-

ciently large and accurately classified set of labeled data.

•	 Accuracy will be compromised if the samples selected

don’t precisely reflect the actual prevalence of positive

and negative cases. In addition, the ratio of positive to

42  Introduction to Artificial Intelligence for Security Professionals

negative cases must fall within acceptable tolerances for

classification to work well. Generally speaking, however,

analysts can usually build accurate models if they can

secure a sufficient quantity of data from each class.

Classification via Logistic Regression (LR)

In the previous chapter, we introduced the concept of feature

space and described how groups of vectors can be assessed for

similarity based on the distance between them and their nearest

neighbors. Feature space plays a role in logistic regression too,

however the mechanisms used to assess similarity and assign

vectors to classes operate somewhat differently.

Mathematically, LR is a linear classifier, meaning that it uti-

lizes straight lines and planes to distinguish vectors belonging to

one class from another. In binary classification, the analyst’s goal

Logistic Regression Decision Boundary
1.5

1.0

0.5

0.0

- 0.5
- 0.5 0.0 0.5 1.0 1.5

/gate.php - 200

/c
on

fig
.p

hp
 -

20
0

FIGURE 2.1:� Decision Boundary in Logistic Regression

Classification Using the Logistic Regression and Decision Tree Algorithms  43

is to build a model that carves feature space into two regions,

with each region enclosing vectors that belong to one class only.

This process is referred to as fitting the data. In LR, the line

or plane that separates one region from another is referred to

as the decision boundary. An example of a decision boundary

separating vectors belonging to two different classes is shown

below:

LR includes several different solver functions for determin-

ing the location of the decision boundary and assigning vectors

to classes. In the discussion below, we’ll describe the liblinear

solver and how it applies the coordinate descent method to

accomplish this.

THE ROLE OF REGRESSION WEIGHTS
Regression weights play a central role in determining how much

each feature and feature value contributes to a given vector’s

class membership. This is achieved by multiplying each feature

value by its corresponding weight as shown below.

 Feature 1 Feature 2 Feature 3
Feature Value 250 14 42

Regression Weight 0.05 75 -6
Product 12.5 1050 -252

Positive and negative weight values contribute to class 1

and class 0 classifications respectively. As we can see, the large

positive value of Feature 1 could indicate that it has a strong

influence on the prediction that this sample belongs to the

positive class. However, Feature 1’s impact is significantly dimin-

ished by its low regression weight. Consequently, Feature 1 can

now be seen to make only a small contribution to this sample’s

potential to be labeled as class 1. In contrast, the contribution

of Feature 2 has been significantly increased due to its much

44  Introduction to Artificial Intelligence for Security Professionals

larger regression weight. In turn, Feature 3’s influence has been

increased six-fold, but in the direction of predicting a negative

class membership.

In practice, the product of a single feature value/regression

weight combination is likely to have only a negligible effect in

predicting a sample’s class membership since each vector may

contain values for hundreds or even thousands of features.

Instead, it is the aggregate of these calculations that is significant.

To predict a class, LR sums all of the products together with

a computed bias value. If the aggregate sum is greater than or

equal to zero, LR will predict the sample as belonging to class 1.

If the sum is less than zero, LR will predict the sample as a class

0 member. In our hypothetical example, LR adds our bias value

(+5) to the sum of our vector products (12.5) + (1050) + (-252)

for a total of 815.5. Since the sum is greater than zero, our sam-

ple would be predicted as belonging to Class 1. We could now

compare the sample’s predicted class membership to its actual

class membership to see if our regression weights were correct.

Most of the training phase of an LR session is devoted to opti-

mizing these weights. First, however, an initial set of weights must

be applied. There are numerous methods for doing so. For exam-

ple, starting weight values can be set arbitrarily using a random

number generator. Ultimately, the classifier will almost always

compute the optimal values given enough computing time.

THE ROLE OF REGULARIZATION AND PENALTY PARAMETERS
As noted in the clustering chapter, features with large values can

distort modeling results, a problem analysts commonly address

through normalization. Similar distortions can be caused by

regression weights with very large values. Consequently, the LR

algorithm provides a number of penalty parameters that ana-

lysts can use to mitigate these effects.

Classification Using the Logistic Regression and Decision Tree Algorithms  45

For example, analysts can use the penalty parameter C to

compress the range of regression weights in much the same way

they use normalization to compress feature values. This pro-

cess is referred to as regularization. C controls how large the

weight values can become. Models with extremely high weight

ranges may do an excellent job in predicting the class of training

vectors but produce subpar results when applied to test data.

Models like these are said to over-fit the data. This disparity in

a model’s accuracy can be an important clue to the analyst that

more aggressive regularization is needed.

Regularization can also be useful when the analyst suspects

that a solver is focusing excessively on a small set of highly influ-

ential features. By regularizing, the analyst can force the solver to

incorporate additional features in a controlled and measured way.

Regularization can also be used to control which features

are allowed to influence the classifier in computing regression

weights. This is accomplished utilizing the penalty parameters

L1 and L2. The two parameters operate somewhat differently.

L1 sets a threshold that determines how aggressive LR should be

in eliminating features with comparatively low predictive power.

The higher the weight assigned to L1, the more features will be

excluded. In contrast, L2 minimizes the impact of a group of

highly correlated features so that their collective influence does

not skew the results.

Let’s take a look now at the sequence of steps and meth-

odology that comprise the training phase of a typical logistic

regression session with scikit-learn.

LOGISTIC REGRESSION TRAINING PHASE
During this phase, the analyst’s primary goal is to fit the data

by producing an optimized set of regression weights. During the

subsequent testing phase, the weights will be applied to predict

46  Introduction to Artificial Intelligence for Security Professionals

each test vector’s class membership. Next, the results will be

subjected to validation functions that determine how accurately

the predicted class assignments match the known class labels.

Step 1: Data Import and Session Setup
The analyst begins by importing two files:

1.	 A matrix of normalized training samples.

2.	 A vector of labels that define each sample’s class

membership.

As shown below, each vector can be represented graphically

as a point in feature space such that its class membership is

indicated visually.

Classification Using the Logistic Regression and Decision Tree Algorithms  47

Vectors of Two Different Classes in Feature Space
FIGURE 2.2:� Labeled Vectors in Feature Space

Step 2: Regularization and Regression Weight Optimization
An initial set of regression weights are assigned, and the ana-

lyst invokes a likelihood function. This compares the actual

number of positive and negative cases to the aggregate quantity

predicted using the initial weights. The resulting score is used

to calculate a positive or negative adjustment to each weight’s

value. The analyst can control the size of this adjustment on a

feature-by-feature basis by utilizing a learning rate parameter.

Over the course of repeated calculation cycles, the regres-

sion weights will gradually and incrementally move closer and

closer to their optimal values. After each optimization, the ana-

lyst can experiment with different penalty parameter settings

and then assess the resulting model.

48  Introduction to Artificial Intelligence for Security Professionals

However, this brute force approach to optimization is both

computation- and time-intensive. At some point, the incre-

mental improvements in model accuracy may no longer justify

additional refinements. When that occurs, the analyst may elect

to end the training process and move on to the testing phase.

Step 3: Assigning Probability Scores to Class Predictions
Recall that a vector’s classification is computed by summing all

of its feature value/weight products together with the bias value

and that the vector is assigned to class 1 if the sum is equal to

or greater than zero and to class 0 if it is not. However, LR is

intrinsically a method for predicting the probability that a given

vector belongs to a particular class. Therefore, LR includes a

logit function that converts the classification result into a point

along a probability curve that ranges from zero to one as shown

below.

The closer the point is to a probability score approaching y=1,

the stronger the prediction will be that the sample belongs to class

1 (the positive case). Likewise, the closer the point is to p=0, the

more strongly it will be predicted to belong to class 0 (the negative

case). Results that approach the p=.5 points from either direction

become increasingly ambiguous with respect to class predictions.

As shown above, the decision boundary is represented by the p=.5

location along the probability curve. If a sample were to land on

this coordinate, then it would be equally likely to belong to either

class, making a confident prediction impossible.

Step 4: Exporting the Logistic Regression Model
The resulting classification model can now be exported and

subjected to testing. Mathematically, the model consists of the

bias value along with a vector of regression weights. Once these

have been computed, the coordinates of the decision boundary

Classification Using the Logistic Regression and Decision Tree Algorithms  49

can be calculated. In the simplest case of a classification prob-

lem with only two features, the equation takes the form x2 =

-(m1/m2) x1 +b in which x1 and x2 are the feature values,

m1 and m2 are their respective regression weights and b is the

bias value.

In practice, however, this equation is expanded to sum the

products of every regression weight/feature value combination.

The shape of the resulting decision boundary is determined by the

number of features being used for classification. If there are two

features, the decision boundary will comprise a line. If there are

three dimensions, it will comprise a plane. In higher dimensional

spaces than these, the decision boundary will comprise a hyper-

plane, with one dimension added for each additional feature.

If a non-zero bias value has been computed, the origin point

for this decision boundary will be shifted by the number of units

specified. In the example below, the origin point for the decision

boundary has been shifted five units up along the x2 axis.

8
7
6
5
4
3
2
1
0

X1

X2

FIGURE 2.3:� Logistic Regression with a Bias of 5

50  Introduction to Artificial Intelligence for Security Professionals

LOGISTIC REGRESSION TESTING PHASE
During this phase, the analyst assesses the model by exposing it

to data it hasn’t seen before (i.e., the test vectors) and then mea-

suring the accuracy of its predictions. One of the most common

validation methods employs a confusion matrix function, which

examines each sample in turn and then compares its predicted

class membership to its actual class label. Next, it assigns the

prediction for that sample to one of four categories:

•	 A True Positive (TP) is a sample that has correctly been

predicted as belonging to class 1. In the example below,

there are 150 true positives.

•	 A True Negative (TN) is a sample that has correctly been

predicted as belonging to class 0. In the example below,

there are 900 true negatives.

•	 A False Positive (FP) is a sample that has been predicted

to belong to class 1 but actually belongs to class 0. In the

example below, there are 50 false positives.

•	 A False Negative (FN) is a sample that has been pre-

dicted to belong to class 0 but actually belongs to class 1.

In the example below, there are 35 false negatives.

	 Confusion Matrix Example	 Predicated by Model
Class Membership Actual Class 0 Class 1

Samples that belong to Class 0 950 900 50
Samples that belong to Class 1 185 35 150
Total Samples 1135 935 200

Total True Positives 150
Total True Negatives 900
Total False Positives 50

Total False Negatives 35

Classification Using the Logistic Regression and Decision Tree Algorithms  51

Once the matrix has been created, analysts can use it to

compute a variety of validation metrics. Two of the most com-

mon ones are precision and recall.

•	 Precision measures the rate at which a model’s positive

prediction is a correct one, for example, the proportion

of messages that are predicted to be spam that are actu-

ally spam. This is calculated by dividing the number of

true positives by the sum of the true positives plus the

false positives. In this example, the precision is .75.

•	 Recall measures the rate at which the model correctly

classifies a positive case, for instance the proportion

of actual spam messages that are correctly recognized

as spam. Recall—sometimes referred to as the “True

Positive Rate”—is calculated by dividing the number of

true positives by the sum of the true positives plus the

false negatives. In this example, the recall score is .81.

Analysts can also measure a model’s overall accuracy and

the errors it makes in classifying negative cases. Metrics include:

•	 Mean Accuracy, which is calculated by summing the

number of true positives and true negatives and then

dividing the result by the total number of samples. In this

example, the mean accuracy rate is approximately .93.

•	 Misclassification Rate (also referred to as the “error

rate”), which is calculated by subtracting the Mean

Accuracy rate from 1. In this example, the error rate is

approximately .07.

•	 False Positive Rate, which measures how often the model

predicts a negative class sample as a positive one, e.g.

classifying a benign message as spam. This is calculated

by dividing the number of false positives by the number

52  Introduction to Artificial Intelligence for Security Professionals

of actual negatives. In this example, the false positive

rate is approximately .05.

•	 Specificity, which measures how often a model’s nega-

tive prediction is a correct one, e.g. the proportion of

messages that are predicted to be benign that are actu-

ally benign. This is calculated by dividing the number of

true negatives by the number of actual negatives. In this

example, the specificity rate is approximately .95.

•	 Prevalence, which measures the proportion of positive

samples in the sample set. This is calculated by divid-

ing the number of actual positives by the number of test

samples. In this example, the prevalence score is .16.

We can now see why sampling plays such a central role

in building an accurate model. If the prevalence rate is

skewed with respect to the ground truth, then all of the

other calculations will be distorted as well, resulting in a

model with subpar accuracy.

Overall, the model illustrated here appears to be a relatively

good one, with an accuracy rate near .93 and a false positive rate

around .05. However, the metrics also show that our model is

better at accurately predicting negative cases (a specificity rate

approaching .95) than positive cases (a recall rate of .81 and a

precision rate of .75). This may be acceptable in situations, such

as spam detection, in which a few false negatives may not be

particularly damaging. When it comes to detecting a serious net-

work incursion, however, a model like this would likely require

a significant amount of re-training and re-tuning to produce the

required accuracy. As always, the accuracy thresholds must be

determined by the nature of the classification problem and its

impact on the organization.

Classification Using the Logistic Regression and Decision Tree Algorithms  53

MODEL EVALUATION USING RECEIVER OPERATING
CHARACTERISTIC CURVES
Receiver Operating Characteristic (ROC) curves provide a

convenient and visually intuitive way to assess the quality of a

model’s predictions and to compare the accuracy of one model

against another in solving a binary classification problem. This

is accomplished by creating a graph of ROC space in which the

True Positive Rate, (i.e., Recall), is plotted on the y-axis against

the False Positive Rate plotted on the x-axis for every possible

classification threshold.

As shown below, the more accurate a model is, the closer its

ROC curve will be to the upper edge of the left quadrant of ROC

space. Curves that lie next to the dotted “no discrimination”

line represent cases in which the model’s predictions would be

no better than those produced by a random guess. An illustra-

tion of ROC curves in ROC space is shown below.

ROC Space
1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Better

Worse

False Positive

True Positive

FIGURE 2.4:� Description of ROC Space

54  Introduction to Artificial Intelligence for Security Professionals

To plot our curve, we begin by counting the number of

samples our model scored correctly and incorrectly at each

probability threshold. In the figure below, for example, the

true negatives and true positives are indicated by the left and

right bars respectively. The probability score for each of these

predictions is shown on the x-axis. The number of samples cor-

responding to each probability score is measured on the y-axis.

We can see that there is very little overlap between the left and

right bars, indicating that our model has done a good job of

accurately classifying our positive and negative cases. As one

might expect, most of the errors are found adjacent to the .5

probability score, where the model had the greatest difficulty in

differentiating one class from another.

To define our ROC curve, we calculate the True Positive Rate

(the Recall) and the False Positive Rate for a representative set

of probability thresholds. The TPR will provide us with the coor-

dinates for the y-axis. The FPR will provide the coordinates for

the x-axis. Here we’ll confine ourselves to calculating the ROC

curve coordinates for the samples located at the .4, .5, and .6

probability threshold. We’ll start with the .5 threshold.

TPR = �# of true positives ÷ the sum of the true positives plus the
false negatives

	 = .92380952381 (the coordinate on the y-axis)
FPR = # of false positives ÷ by the number of actual negatives
	 = .121428571429 (the coordinate on the x-axis)

FIGURE 2.5� Classification Results at Different Thresholds

Classification Using the Logistic Regression and Decision Tree Algorithms  55

We’ll continue in this way with the .4 and .6 probability

thresholds until we produce the ROC curve shown below. The

location of the curve in the upper left quadrant confirms that

our model is extremely accurate at a wide range of probability

thresholds.

FIGURE 2.6:� ROC Curve

Now let’s repeat the same process with a model that’s per-

forming poorly. We’ll start by computing the TPRs and FPRs for

the same three probability thresholds.

FIGURE 2.7:� Classification Results at Different Thresholds

Now, let’s view the resulting ROC curve.

FIGURE 2.8:� ROC Curve

56  Introduction to Artificial Intelligence for Security Professionals

As we can see, the ROC curve is located much closer to the

“no discrimination” line, indicating that this model is far less

accurate across the range of probabilities.

LOGISTIC REGRESSION PITFALLS AND LIMITATIONS
The logistic regression algorithm in scikit-learn is efficient and

can produce excellent results given certain limitations:

•	 The underlying data must intrinsically support linear

classification. Operationally, this means that it must

be possible to accurately classify vectors using decision

boundaries that carve up feature space with straight

lines and planes. If the dataset is not linearly separable

in this way, more complex methods of representing fea-

tures may be employed or the analyst may decide to use

a different classification algorithm.

•	 LR is vulnerable to under-fitting when datasets have

many outliers, features with disproportionately large

values, and sets of features that are highly correlated.

Normalization and regularization can only partly offset

these effects.

Classification via Decision Trees

Decision tree algorithms determine whether a given vector

belongs to one class or another by defining a sequence of “if-then-

else” decision rules that terminate in a class prediction. The type

of DT algorithm selected depends on whether the class label will

have categorical or continuous values.

•	 If the class label is categorical, e.g., we want to predict

whether or not a given network connection is associated

with a botnet, we would utilize DT classification.

Classification Using the Logistic Regression and Decision Tree Algorithms  57

•	 If the class label has continuous values, e.g. we want to

predict the best selling price for a new product, then we

would utilize DT regression.

The algorithm furnished by scikit-learn is a CART decision

tree, meaning that it can generate both classification and regres-

sion trees. In this chapter, we’ll focus on DT classification since

this method is well-suited to solving the kinds of network secu-

rity problems you’re likely to encounter most frequently.

Mathematically, DT is a non-linear classifier. This means

that, unlike LR, DT does not construct decision boundaries with

straight lines and planes. Instead, it carves feature space into

rectangles that may contain as little as a single vector each. As

we shall see, this difference has important implications with

respect to the fitting process and how this influences the result-

ing model accuracy.

DECISION TREE TERMINOLOGY
Decision trees are aptly named since they utilize roots, branches

and leaves to produce class predictions. Consider the hypothet-

ical example of a decision tree used to identify malicious URLs.

Here, the positive case indicates URLs associated with exploits

versus those that are not.

As is customary, the tree was constructed top-down begin-

ning with the root, which contains all of the training samples. In

this case, these are a mix of both malicious and benign URLs.

Our goal is to split these samples into increasingly “pure” sub-

sets based on their features and feature values. We’ll continue

in this way until we produce one or more subsets of URLs that

belong to one class only, or the model building process ends due

to our hyperparameter settings.

We’ll begin by splitting our training set into two branches

based on the feature domain age. We have two feature values to

58  Introduction to Artificial Intelligence for Security Professionals

split on: “<7 days old” and “>7 days old.” The subset of samples

that match the first split will be copied to the “Over 250k daily

visitors” node. Likewise, samples that match the second split

will be copied to the “On Alexa top site list” node. In each node,

we’ll find a mix of samples belonging to classes 0 and 1 because

the nodes are not yet pure. Therefore, additional branches will

be needed before the tree is complete.

We’ll continue splitting based on our “URL is autogenerated”

and “Threat intel report on domain registrant” feature values

until the tree is complete. Working down the left branch (less than

seven days old), we can predict that a URL will be classified as:

•	 Malicious (class 1) if less than 250,000 visitors per day

accessed the site and the URL was autogenerated.

•	 Benign (class 0) if less than 250,000 visitors per day

accessed the site but the URL was not autogenerated.

Working down the right branch (more than seven days old),

we can predict that a URL will be classified as:

<7 days old

Threat intel report on
domain registrant

URL is
autogenerated

Class 0

Class 0

Class 0

Class 0Class 1 Class 1

On Alexa top
site list

Over 250k daily
visitors

All URL’s

Older than 7 days

Root Node
Contains all of the
training samples

Terminal Nodes
Assign the class prediction

Leaf Nodes
Contain mixed subset of
samples after splitting

Branches
Split samples into subsets
based on feature values

Yes No Yes No

Yes No Yes No

FIGURE 2.9:� Decision Tree Example and Terminology

Classification Using the Logistic Regression and Decision Tree Algorithms  59

•	 Malicious (class 1) if it was not included on the Alexa

Top Sites list and a threat intelligence report has been

issued about the domain registrant.

•	 Benign (class 0) if:

•	 It was included on the Alexa Top Sites List,

Or

•	 It wasn’t included on the Alexa Top Sites List but no

threat intelligence report has been issued about the

domain registrant.

DT TRAINING PROCESS
How does the DT classifier determine which feature and feature

values should be used to create each branch? How does node

purity come into play? Let’s take a look at the step-by-step pro-

cess the DT classifier proceeds through in evaluating split points

and building trees. We’ll consider the hypothetical case in which

we have 500 samples in our training set:

1.	 DT examines all 500 vectors and selects the first avail-

able feature to evaluate as a potential split point. This is

also referred to as the split variable.

2.	 Next, DT examines the range of values associated with

this feature and chooses an initial split value. In the

example below, the feature values range from 1 to 5.

Therefore, DT might begin by choosing a split value that

falls between 1 and 2. In this example, DT sets the split

value to 1.5.

Range of Feature Values 1 â 2 â 3 â 4 â 5
Example Split Variables 1.5 2.5 3.5 4.5

3.	 DT copies samples with feature values less than 1.5 to

child node #1 and samples with feature values equal to

or greater than 1.5 to child node #2. We now have 300

60  Introduction to Artificial Intelligence for Security Professionals

mixed class samples in child #1 and 200 mixed class

samples in child #2.

4.	 DT evaluates the resulting reduction in impurity by

computing a Gini Impurity score for each of the child

nodes or leaves. Next, the two scores are aggregated to

produce an overall benefit score for that split candidate.

(Benefit scores can also be computed using measures of

“entropy” rather than impurity.)

5.	 DT chooses the next split value and repeats the process.

In this example, the new split value is 2.5. Once again,

Gini and benefit scores are computed for each of the

candidate children. DT continues the process for every

other split value until all of the Gini impurity and benefit

scores for that feature have been computed.

Range of Feature Values 1 â 2 â 3 â 4 â 5
Example Split Variables 1.5 2.5 3.5 4.5

6.	 DT selects the next feature in the feature set and then

repeats steps 2 through 5, iterating recursively through

every split value and producing Gini impurity and benefit

scores for each new set of candidate leaves. This process

continues until all of the features and split values have

been assessed.

7.	 DT chooses the feature/split value combination that pro-

duced the best overall benefit score and uses this to add

new branches and leaves to the tree. At this level, each

of the resulting leaves still contains a mix of class 0 and

class 1 samples. The proportion of samples of each class

can be used to compute a probability score. For exam-

ple, if a leaf contains 100 samples in which 70 belong

to class 0 and 30 belong to class 1, then we can predict

that a new sample produced by this split will have 30%

Classification Using the Logistic Regression and Decision Tree Algorithms  61

probability of belonging to class 1 (30/100) and a 70%

probability of belonging to class 0 (70/100).

8.	 DT begins the same process for each of the two new leaves

until the tree is saturated (i.e., all nodes are perfectly

pure) or DT encounters a stopping criterion associated

with one of the hyperparameter settings.

9.	 If necessary, the analyst can prune the tree to remove

extraneous branches that add to the model’s compu-

tational complexity without improving the model’s

accuracy.

Below, we can see the first four branches of a decision tree

that detects websites that are botnet command and control sys-

tems. Notice how each node includes a feature name, sample

counts, Gini Impurity scores, split values, and class predictions.

Later in this chapter, we’ll examine the complete tree and the

process used to generate it in more detail.

200: config.php <= 0.5
gini = 0.4817
samples = 94

value = [38, 56]
class = Bot Panel

200: im9/index.php <= 0.5
gini = 0.3585
samples = 47

value = [36, 11]
class = Not Bot Panel

404: data/js/plugins/index.php <= 0.22
gini = 0.4824
samples = 64

value = [38, 26]
class = Not Bot Panel

gini = 0.0
samples = 4
value = [0, 4]

class = Bot Panel

gini = 0.0
samples = 2
value = [2, 0]

class = Not Bot Panel

gini = 0.0
samples = 30
value = [0, 30]

class = Bot Panel

gini = 0.0
samples = 15
value = [0, 15]

class = Bot Panel

gini = 0.2726
samples = 43
value = [36, 7]

class = Not Bot Panel

404: admin/images/icons/flags/so.png= 0.98
gini = 0.2076
samples = 17
value = [2, 15]

class = Bot Panel

True False

FIGURE 2.10:� Decision Tree Details

62  Introduction to Artificial Intelligence for Security Professionals

DECISION TREE CLASSIFICATION
Let’s take a look now at the sequence of steps and methodology

that comprises the training, testing, and deployment phases of a

typical decision tree classification session with scikit-learn.

Step 1: Data Import and Session Setup
Once again, the analyst begins by importing two files:

1.	 A matrix of training samples.

2.	 A vector of labels that define each sample’s class

membership.

Step 2: Generating and Customizing the Tree
We noted earlier that most of the time spent developing an LR

model is devoted to optimizing regression weights by applying

various regularization parameters. In DT training, most of the

algorithm processing time is devoted to optimizing split points

in order to produce an efficient model that meets the desired

accuracy threshold without over-fitting the data.

The default hyperparameter settings provided with the DT

classifier in scikit-learn will often be sufficient to accomplish

this without modifications. In such cases, the analyst simply

invokes the solver, and the algorithm produces the decision tree

and the associated set of Gini Impurity scores and ROC curves.

In other cases, especially when there are a large number of

features or numerous outliers, an analyst may need to exper-

iment with modifying the hyperparameter settings in order to

overcome the tendency for decision tree classifiers to sometimes

“over-fit” data by generating an excessive number of branches.

During training, the resulting model will appear to provide a

high degree of accuracy. When applied to test data, however, the

accuracy scores will be much lower. Analysts refer to this as a

failure to generalize. Models that over-fit data are also likely to

Classification Using the Logistic Regression and Decision Tree Algorithms  63

be computationally inefficient and unwieldy to deploy. As noted

earlier, analysts can apply stopping criteria to limit branch pro-

duction using such hyperparameters as:

•	 max_depth. This determines the maximum number of

branches and leaves permitted before tree construction

ends.

•	 min_samples_split. This determines the minimum num-

ber of samples a node must possess to be eligible for a

split.

•	 min_samples_leaf. This determines the minimum num-

ber of samples needed to create a child leaf.

•	 max_leaf_nodes. This determines how many leaves can

be created in total.

Analysts can also apply regularization using hyperparameter

settings that modify the influence of each feature on the splitting

process. These include:

•	 feature_importances. This parameter can be applied to

a single feature or a group of features. The higher the set-

ting, the more likely the feature will be utilized as a split

variable.

•	 n_features. This determines how many features overall

can be used to construct the tree.

Assigning Probability Scores to Class Predictions
The DT algorithm intrinsically generates a probability score

for every class prediction in every leaf based on the proportion

of positive and negative samples it contains. This is computed

by dividing the number of samples of either class by the total

number of samples in that leaf. Consider, for example, a leaf

containing 15 samples of class 0 and 5 samples of class 1. In

this scenario, the probability that a sample in this leaf belongs

64  Introduction to Artificial Intelligence for Security Professionals

to class 1 is equal to the number of positive samples (5) divided

by the total number of samples (20) = 20%. Likewise, we can

predict that any sample copied to this leaf will be 80% likely to

belong to class 0.

Step 3: Testing and Deployment
Once the DT model has been built, it’s subjected to the same

testing and validation procedures we described earlier for logis-

tic regression. Once the model has been sufficiently validated, it

can be deployed to classify new, unlabeled data.

DECISION TREE PITFALLS AND LIMITATIONS
Even with its default hyperparameter settings, the DT algorithm

in scikit-learn works well and requires comparatively little

advance effort to prepare the sample data. It can also produce

models that are highly efficient since they employ only the sub-

set of features required to classify rather than the entire feature

set. In contrast, LR models generally include all of the features

in the sample matrix except for those intentionally removed

through regularization.

However, decision trees are subject to certain characteristic

errors and limitations.

•	 Like all DT classifiers, the scikit-learn version can pro-

duce overly complex trees that over-fit the data and

perform poorly when exposed to test data. In general,

the larger the feature set, the more likely over-fitting is

to occur.

•	 The implementation of split points is determined based

on “local” optimizations between a parent node and its

child leaf rather than on what might be optimal for the

tree as a whole. Consequently, there is no way to ensure

that a given tree has taken the optimal form.

Classification Using the Logistic Regression and Decision Tree Algorithms  65

•	 Decision trees can be unstable. Small variations in the

sample data can cause a completely different tree to be

produced.

Analysts can address these issues by creating ensembles of

trees from random subsets of the training data. Each tree is then

able to “vote” on whether a given sample belongs to one class

or another. The prediction that receives the most votes wins.

In scikit-learn, this is accomplished using the Random Forest

algorithm.

Classification Applied to Real-World Security Threats

On June 5, 2013, Microsoft announced the culmination of a

successful “coordinated operation” with partners in law enforce-

ment and the financial services industry to take down 1,462

Citadel botnets by severing the connections between their com-

mand and control (C&C) systems and the millions of computers

they manage. At the time of the announcement, the Citadel mal-

ware was believed to have affected roughly five million people

and caused more than $500 million in losses to individuals and

businesses.

The forensic methods used by Microsoft and its partners to

identify the C&C systems have not been released to the public.

However, we’ll show how classification analysis can be applied

to detect botnet C&C systems that are currently in the wild

today. We’ll illustrate these methods twice, first using a deci-

sion tree and then again with logistic regression. In both cases,

we’ll be training our models with data produced by issuing HTTP

requests for the 4,789 website offsets known to be associated

with 13 different botnet panels.

Next, we’ll sort the files returned by these requests into groups

based on their response codes and then use the ssdeep program

66  Introduction to Artificial Intelligence for Security Professionals

to produce fuzzy hashes of each file. Fuzzy hashing provides a

convenient way to assess how similar one file is to another with-

out needing to examine the file contents directly. The resulting

comparison values will range from 0-100%. We’ll normalize these

values to range between 0 and 1 for convenience.

During training, the DT and LR algorithms will examine all

of the features and their hash values to assess the degree of sim-

ilarity between offsets originating from C&C and benign servers

respectively. During deployment, the resulting model will use

these comparisons to predict whether a particular offset is asso-

ciated with a botnet C&C system or not.

Before we begin our analysis, however, we must first proceed

through the feature extraction and vectorization process. As

we shall see, each of the resulting vectors will include 357,947

features. Each feature will consist of a response code and an

associated hash value. With our sample vector and label vector

created, we’ll be ready to begin the training process.

Once our models have been trained and tested, we’ll deploy

them against unlabeled web server offset samples in order to

classify them. Unless regularization has been applied to elim-

inate features, we can expect the LR model to include the

computed bias value along with regression weights for all of the

357,947 features we find in our sample dataset. In contrast, our

decision tree model will be much smaller and far more computa-

tionally efficient since it will need to employ only eight features

to accurately detect botnet panels.

For simplicity, we’ve condensed the separate training and

testing phases into a single train/test procedure in which 70%

of our samples are used for training and the remaining 30% is

reserved for testing.

Please note: All of these examples are based on ID Panel,

a tool Cylance introduced in August 2016 at the Blackhat

Classification Using the Logistic Regression and Decision Tree Algorithms  67

conference in Las Vegas. If you’d like to experiment with ID

Panel or perform the classification procedures described below,

please visit https://www.cylance.com/intro-to-ai, where you’ll be

able to download all of the pertinent instructions, applications,

and data files.

COLLECTING AND PREPARING OUR SAMPLE DATA
Step 1: Data Collection
Before any model can be trained, we must first collect an appro-

priate sample dataset. We’ve already done this for you by issuing

HTTP requests to all of the C&C and benign web servers and

then consolidating the response codes and files within the pre-

vectors.json file. Therefore, there is no need for you to connect

to any server unless you want to add new offsets to the data files.

Having already collected a sample dataset, we’ll begin by

running python create_prevectors.py with the expectation that

the script will not actually initiate any HTTP requests.

If requests are generated, it’s likely that your copy of the

prevector data has been stored in the wrong location.

If you would like to incorporate offsets from additional serv-

ers, you can simply add them to the c2_labels directory with the

following command:

After that, you must run python create_prevectors.py again

to scan the newly added site(s).

68  Introduction to Artificial Intelligence for Security Professionals

This generates the same 4,789 requests we used to assemble

our existing samples. You can see the first 109 of these requests

in the code example below.

And here are the remaining set of requests numbered

4,776- 4,789.

Step 2: Feature Extraction
Now that we’ve collected our samples, we can extract the fea-

tures we’ll be using to construct our vectors with the following

command.

Classification Using the Logistic Regression and Decision Tree Algorithms  69

As shown, this produces 357,947 features associated with

14 different labels. Thirteen of these are associated with our

known botnet panel sites. The 14th label represents our set of

clean servers.

Step 3: Vectorizing
Now, we can use the following code to assemble our vectors

using the file of features we just created:

This produces a matrix of vectors including those shown

below:

70  Introduction to Artificial Intelligence for Security Professionals

With our vector of labels and label matrix created, we can

now begin the model training process.

Session Workflow: Classification with Decision Trees

As noted earlier, the scikit-learn DT classifier generally does an

excellent job of building models with its default hyperparameter

settings. Below, we’ve used the –h argument to display the list of

hyperparameter options for the DT script train_model.py.

If we’re satisfied with the defaults, we can start training a

model immediately by running python train_model.py.

Once processing is complete, the algorithm will output the

model file bot_model.mdl and display a threshold graph and an

ROC curve assessing its accuracy. As we can see, our model is

doing an excellent job of accurately classifying C&C sites across

the full range of probability thresholds. Your graph may be some-

what different since model generation is at least partially based

on randomized values.

Classification Using the Logistic Regression and Decision Tree Algorithms  71

Once the graphs are closed, we can export the decision tree

in the form of a graphics file so we can view its structure. Our

graphic file is named tree.png. We can now visually trace the

decision process beginning with the root.

As we can see, the root contains 94 samples of mixed classes.

Our first split variable is the config.php feature and our split

value is ≤ to .5. A total of 64 samples match this criterion, (there-

fore the condition is true). Therefore, these samples have been

copied to the 404 child node on the left. The Gini score of .4824

indicates that this node contains samples of both classes, so addi-

tional splitting will be required.

In contrast, we can see that 30 of the root samples do

not match the splitting criterion, (i.e., the condition is false).

FIGURE 2.11:�Classification Thresholds and ROC Curve

72  Introduction to Artificial Intelligence for Security Professionals

Therefore, these samples are copied to the child node on the

right. The Gini score of 0.0 for this node indicates that we have

attained perfect node purity. The sample count shows that 0

of these samples belong to class 0 (not a botnet panel) and 30

belong to class 1 (a botnet panel is present). Therefore, we

have found our first terminal node, which requires no further

processing.

We continue following our tree from branch to branch down-

ward until we reach our eighth feature, which produces our final

set of terminal nodes. The child node on the left contains 38

samples from benign servers. The child node to its right contains

a single sample from a C&C system. Now that all of our samples

404: includes/Smarty -3. 1 .8/libs/sysplugins/smarty_internal_parsetree .php <=0.795
gini = 0.4824
samples = 64

value = [38, 26]
class = Not Bot Panel

200: inc/config .php <= 0.5
gini = 0.417

samples = 54
value = [38, 16]

class = Not Bot Panel

gin i = 0.0
samples = 10
value = [0, 10]

class = Bol Panel

200: inc/config .php <= 0.385
gini = 0.3299
samples = 48

value = [38, 10]
class = Not Bot Panel

gini = 0.0
samples = 6
value = [0, 6]

class = Bot Panel

404: system/lib/notify.php <= 0.795
gini = 0.2355
samples = 44
value = [38, 6]

class = Not Bot Panel

gini = 0.0
samples = 4
value = [0, 4]

class = Bot Panel

200: assets/img/login bg.png <= 0.5
gini = 0.1723
samples = 42
value = [38, 4]

class = Not Bot Panel

gini = 0.0
samples = 2
value = [0, 2]

class = Bot Panel

404: css/images/toggle.svg <= 0.5
gini = 0.095

samples = 40
value = [38, 2]

class = Not Bot Panel

gini = 0.0
samples = 2
value = [0, 2]

class = Bot Panel

404 : data/images,lang/32,rs .png <= 0.5
gini = 0.05

samples = 39
value = [38, 1]

class = Not Bot Panel

gini = 0.0
samples = 1
value = [0, 1]

class = Bot Panel

gini = 0.0
samples = 38

value = [38, 0]
class = Not Bot Panel

gini = 0.0
samples = 1
value = [0, 1]

class = Bot Panel

gini = 0.0
samples = 30
value = [0, 30]

class = Bot Panel

200: config.php <= 0.5
gini = 0.4817
samples = 94

value = [38, 56]
class = Bot Panel

True False

FIGURE 2.12:� Decision Tree Details

Classification Using the Logistic Regression and Decision Tree Algorithms  73

have been classified, our decision tree is complete and we can

export our model file for deployment. We’ll name our model file

bot_model.mdl.

This model is extremely efficient since it needs only eight

features—rather than the 357,947 we began with—to classify

samples with a high degree of accuracy. In addition:

•	 When we begin collecting new unlabeled samples to clas-

sify, we’ll be able to limit our HTTP requests exclusively

to those relevant to these eight features.

•	 The feature extraction process too will proceed much

more quickly and efficiently since we’ll be able to ignore

the other 357,939 features we extracted from our origi-

nal training set.

Let’s use our model to classify live websites to see if they’re

C&C systems. In order to do this we run classify_panel.py

with the URL of the server and the name of our model file as

arguments.

Warning: We strongly recommend that you do not test

any of our models yourself against C&C servers in the wild

unless you have taken proper precautions in advance to pre-

vent your system from becoming infected by malware.

Once again, we issue HTTP requests to collect response

codes and offsets. However, we need only eight requests since

we’re classifying using eight features only.

Next, we repeat the feature extraction process we used ear-

lier, vectorize the results, and then run the vectors through the

model.

74  Introduction to Artificial Intelligence for Security Professionals

As we can see, our model was able to determine with only

eight requests that the web server was benign. Let’s try again

with a server that we know to be a C&C system.

Once again, we issue eight requests, extract and vectorize

the results, and then run the vectors through the model.

As we can see, the model has correctly classified the server

as a C&C system.

Session Workflow: Classification with Logistic
Regression

The classification procedure we just stepped through was orig-

inally designed using decision tree methods. However, we can

solve the same classification problem using logistic regression. In

order to train the LR model, we’ll use the script train_lr_model.

py and adjust our hyperparameter settings using the available

command line arguments.

Below, we’ve applied the –h argument again to display the

list of defaults and optional arguments for train_lr_model.py.

Classification Using the Logistic Regression and Decision Tree Algorithms  75

As we did earlier, we’ll run our classifier with its default

hyperparameter settings unchanged. Once processing is com-

plete, the script will output our LR model bot_model.lrmdl along

with its associated threshold graph and ROC curve.

We can see that the default hyperparameter settings have

once again generated an accurate model. Let’s see if we can

improve it further by experimenting with some alternate hyper-

parameter settings. We’ll try changing the penalty from the

default “L2” to “L1.”

FIGURE 2.13:� Classification Thresholds and ROC Curve

76  Introduction to Artificial Intelligence for Security Professionals

This seemingly small adjustment has produced a somewhat

less accurate model than the previous one. Before we proceed

with classification, we’ll retrain our model with the defaults.

We can now apply our model to new unlabeled vectors to

classify them. We’ll use the same command as before but with

bot_model.lrmdl specified in the argument.

Logistic regression is not nearly as aggressive as decision

trees in reducing features, so we need nearly 5,000 requests in

order to classify our target as benign. However, our classification

FIGURE 2.14:� Classification Thresholds and ROC Curve

Classification Using the Logistic Regression and Decision Tree Algorithms  77

has still come through as both correct and confident. Next, we’ll

test our model again against a known C&C system.

Once again we issue our HTTP request, extract and vector-

ize the results, and then run the vectors through the model. As

we can see, the model has correctly classified the target as a

C&C system.

Classification Takeaways

As we’ve seen, classification is a powerful and effective super-

vised learning method that can be applied productively to a

broad range of security problems. Here are some of the key

points we covered in this chapter:

•	 Classification is a supervised learning method that can

work well when there is a sufficient quantity of labeled

data; the samples accurately reflect the proportion of

actual positive and negative cases; and the underlying

data inherently supports classification analysis.

•	 Classification proceeds through a four-phase method-

ology of training, validation, testing and deployment.

In this chapter, we limited our discussion to training,

testing, and deployment. The class membership for all

training and testing samples is always known in advance,

enabling each classifier to build a model based on the

degree to which each feature and feature value predicts

each sample’s known class membership.

•	 Logistic regression and decision trees are both very effec-

tive in performing classification but take very different

78  Introduction to Artificial Intelligence for Security Professionals

approaches in doing so. LR works by computing regres-

sion weights and bias values that determine the degree

to which each feature ultimately influences a class pre-

diction. Decision trees do so by computing split variables

and split values in order to define nodes with increas-

ingly homogeneous class members.

•	 Logistic regression classifiers are more prone to under-fit-

ting data since they must carve feature space up using

straight lines and planes. Decision trees carve feature

space using rectangles and are more prone to over-fitting

since—unless stopping criteria are applied—they create

decision rules for every vector regardless of its actual

prevalence in the underlying data environment. Over-

fitting may be suspected when a DT model that does an

excellent job of classifying training data shows a marked

decrease in accuracy when applied to testing data.

•	 Analysts use a variety of rigorous validation methods to

assess the accuracy of their models. These include confu-

sion matrices, probability threshold diagrams, and ROC

curves, among others. However, a classifier can only pre-

dict the probability that a new, unlabeled sample belongs

to a given class. There will almost always be a quantity

of false positive and false negative class assignments.

Therefore, classification is best suited to situations in

which the error rates fall within acceptable tolerances

that reflect the nature of the classification problem being

addressed.

79

3
Probability

In the classification chapter, we saw how the logistic

regression and decision tree algorithms utilized probability

scores to assign samples to one of two classes. If a sample scored

above the .5 probability threshold, it was assigned to class 1. If it

scored lower than .5, it was assigned to class 0. In this chapter,

we’ll take a broader view of probability as a category of machine

learning methods for making predictions. In particular, we’ll

examine the Naïve Bayes classifi er and the Gaussian Mixture

Model clustering algorithm and consider how they can be applied

to solve security-related detection and remediation problems.

What Exactly Is Probability?

As humans, we’re accustomed to living in an uncertain world in

which our success in achieving goals rests upon our ability to

accurately assess and predict events. We weigh odds and con-

sider probabilities. But, we can never be entirely sure that any

80  Introduction to Artificial Intelligence for Security Professionals

decision we make is the correct one. There is always a random

element that may stymie us. Should we wash our car when the

weather forecast cites a 25% chance of rain? Should we pur-

chase plane tickets for a planned vacation now or wait a few

weeks to see if we can get a better deal?

Probabilistic models are well-suited to solving problems like

these in which we have insufficient or imperfect knowledge.

They are particularly effective in modeling uncertainty. Properly

utilized, they enable us to reduce uncertainty to the point at

which we can make decisions with a high degree of confidence.

COMMON EXAMPLES OF PROBABILITY PROBLEMS
Let’s consider the case of a spinner like the one below, with four

equally-sized quadrants labeled red, yellow, green, and blue

respectively.

FIGURE 3.1:� Color Spinner

Probability  81

Assuming it can turn freely, what is the probability of a

given spin landing on yellow, red, blue or green? To answer this

question, we’ll need to set the spinner in motion. In probability

terminology, each spin is referred to as an experiment or trial.

The evidence produced by each trial is referred to as an out-

come. In this case, we have four possible outcomes: yellow, red,

blue, and green.

To calculate each outcome’s probability, we divide the num-

ber of ways each outcome can occur by the total number of

possible outcomes as shown below.

Outcomes
of interest

Number of ways this
outcome can occur

Number of
possible outcomes

Probability
calculation

P (yellow) 1 4 1/4 = .25
P (red) 1 4 1/4 = .25
P (blue) 1 4 1/4 = .25

P (green) 1 4 1/4 = .25

As we can see, the probability of each outcome is the same:

P=.25.

Now let’s consider a slightly more complicated example in

which we roll a six-sided die like the one shown below.

FIGURE 3.2:� Die

82  Introduction to Artificial Intelligence for Security Professionals

Let’s take the same approach and predict the probability of

each of the six possible outcomes

Outcomes
of interest

Number of ways this
outcome can occur

Number of
possible outcomes

Probability
calculation

P (1) 1 6 1/6 = .16
P (2) 1 6 1/6 = .16
P (3) 1 6 1/6 = .16
P (4) 1 6 1/6 = .16
P (5) 1 6 1/6 = .16
P (6) 1 6 1/6 = .16

If our die has not been tampered with, we can expect equal

probabilities for each of the six possible outcomes (i.e., P=.16).

Now, let’s conduct an experiment to predict the probability

of rolling an odd or even number. On any given trial, we can pro-

duce an odd result by rolling a 1, 3, or 5 and an even number by

rolling a 2, 4, or 6. We use the term event to refer to a result that

can occur in several different ways. The event odd, for example,

can be produced by outcomes 1, 3, or 5, while the event even

can be produced by outcomes 2, 4, or 6. Now, let’s compute the

probability of an even or odd event based on our six possible

outcomes.

Events of
Interest

Number of outcomes
that produce an odd/

even event
Number of

possible outcomes
Probability
calculation

P (even event 3 6 3/6 = .5
P (odd event) 3 6 3/6 = .5

As we can see, the probability of each event is the same in

both cases. Thus, our probability analysis doesn’t help us pre-

dict the results of any given trial. The outcomes will be random.

Probability  83

Often, however, the problems we want to solve involve out-

comes that are not equally probable. Let’s consider this kind of

example using a jar of marbles like the one below.

When we count the marbles, we discover that three are yel-

low, six are red, eight are blue, and five are green. If we choose

a marble randomly from the jar, what is the probability that the

marble will be a yellow one? The table below provides the prob-

ability of selecting each of the four possible outcomes.

Events of
Interest

Number of outcomes
that produce this event

Number of
possible outcomes

Probability
calculation

P (yellow) 3 22 3/22=.13
P (red) 6 22 6/22=.27
P (blue) 8 22 8/22 =.36

P (green) 5 22 5/22 =.22

As we can see, the four possible events occur with different

probabilities. For any given trial, we’re most likely to choose

FIGURE 3.3:� Jar of Marbles

84  Introduction to Artificial Intelligence for Security Professionals

a blue marble (P=.36) and least likely to choose a yellow one

(P=.13).

We’ll conclude this section by examining a case in which

every outcome is equally likely to occur but the events that lead

to these outcomes are not. In this experiment, a trial consists of

reaching into a box containing five cards numbered one through

five. Our goal will be to solve two different probability prob-

lems. First, we’ll compute the probability of choosing one of the

five possible outcomes. Next, we’ll compute the probability of

choosing an odd or even number event.

Once again, we divide the number of ways a particular num-

ber can be selected (1) by the total number of possible outcomes

(5). As before, we find that all of the outcomes are equally likely

to occur.

Events of
Interest

Number of outcomes
that produce this event

Number of
possible outcomes

Probability
calculation

P (1) 1 5 1/5 = .2
P (2) 1 5 1/5 = .2
P (3) 1 5 1/5 = .2
P (4) 1 5 1/5 = .2
P (5) 1 5 1/5 = .2

When it comes to computing event probabilities, however,

the results will be different because three outcomes (1, 3, and

5) produce an odd event while only two (2 and 4) produce an

even one.

Number of ways this
event can occur

Total number of
outcomes

Probability
calculation

P (even) 2 5 2/5 = .4
P (odd) 3 5 3/5 = .6

Probability  85

As a result, on any given trial, we have a 60% probability

(P=.6) of choosing an odd-numbered card and only a 40% prob-

ability (P=.4) of choosing an even-numbered one.

CONDITIONAL VS. JOINT PROBABILITY
In the above examples, each trial was considered independently.

For example, we didn’t consider how flipping a coin to produce

the outcome heads on one trial might affect the probability of

obtaining a tails outcome on the next one. However, many prob-

lems of interest do require us to consider the degree to which

two outcomes are related:

•	 In conditional probability problems, our goal is to deter-

mine the probability that Event B will follow Event A,

e.g., the likelihood that a spike in the number of car acci-

dents will occur following an ice storm.

•	 In joint probability problems, our goal is to determine

the probability of Events A and B occurring at the same

time, e.g., whether a throw of the dice will produce a pair

of fives.

Let’s consider an example of conditional probability first.

Imagine you have a bag containing three quarters and two

dimes. What’s the probability of selecting one of the quarters on

your first trial? To compute this, we divide three (the number of

possible quarter selection events) by five (the number of possi-

ble outcomes) for a probability score of P=.6.

As it happens, we did select a quarter, leaving two quarters

and two dimes in the bag. What’s the likelihood that we’ll select

a quarter on our next trial? Once again, we divide the number of

possible quarter events (reduced from 3 to 2) by the number of

possible outcomes (reduced from 5 to 4) for a probability score

86  Introduction to Artificial Intelligence for Security Professionals

of P=.5. As we can see, the outcome of our second trial depended

upon the outcome of our first.

Next, let’s consider an example of joint probability. Imagine

you’re playing dice and have just bet your life savings on throw-

ing a pair of fives. What’s your probability of winning? We know

from our earlier example with a single die that our chance of pro-

ducing a five on any given throw is P=.16. This doesn’t change

whether we throw two dice at the same time or a thousand. For

each die, the probability of throwing a five will always be P=.16.

The two events are independent of one another.

Intuitively, however, we know that the probability of throw-

ing two fives at the same time must be lower than the probability

of throwing one five and some other number. In joint probability

problems, we compute this by multiplying the probability values

of the two events by each other to produce a joint probability

score as shown below:

Probability of throwing a five on dice #1:	 .16
Probability of throwing a five on dice #2:	 .16
Probability of throwing two fives:		 .16 *.16 = .0256

As we can see, our prospects of winning are poor indeed.

Classification with the Naïve Bayes Algorithm

The Naïve Bayes algorithm is derived from Bayes Theorem,

which was first conceived in the 18th century by English statisti-

cian Thomas Bayes and later refined into its present form by the

French mathematician Pierre-Simon Laplace. Bayes Theorem

provides the means to calculate the probability that a given

event A will occur when condition B is true. In a classification

problem, Bayes Theorem enables us to compute the conditional

probability that a sample belongs to a particular class given its

feature attributes. As we discussed in Chapter 2, classification

Probability  87

is an example of a supervised learning method. Consequently,

a classification session will typically proceed through a training,

validation, and testing sequence.

The Bayes Theorem can be difficult to solve because it takes

conditional probabilities into account. That is, it computes the

probability relationships between every feature in the dataset in

the course of producing a classification decision. As the num-

ber of features increases, the number and complexity of these

relationships can increase exponentially. The costs in terms of

computing time and resources can rapidly become prohibitive.

The Naïve Bayes Theorem dramatically simplifies this process

by making the assumption of class conditional independence. In

other words, it ignores the potential effects of conditional proba-

bilities when it assigns samples to classes. In almost every case,

this assumption is untrue. It’s in this sense that this formulation

of the Bayes Theorem is naïve. Surprisingly, however, the Naïve

Bayes often produces excellent results and with great efficiency

since it requires only four components to classify a sample.

Naïve Bayes
Likelihood Class Prior Probability

Posterior
Probability

Predictor Prior
Probability

FIGURE 3.4:� Naïve Bayes Probability Equation

88  Introduction to Artificial Intelligence for Security Professionals

1.	 Posterior Probability: [P (c | x)] This is the probability

of a sample belonging to a particular class (c) given its

feature attributes (x). In practice, this is calculated mul-

tiple times, once for each potential class assignment. (We

actually calculate this one time less than the number of

classes since we can derive the remaining probability

score by summing the previous ones and then subtracting

the total from 1.) The result with the highest probability

score determines which class is assigned.

2.	 Class Prior Probability: [P (c)] CPP refers to the preva-

lence of the class in the dataset. For example, if we have

ten samples in our dataset and seven of them belong to

Class 1, then the CPP for Class 1 = 7/10 = .7. We can also

express this by saying that a random sample is 70% likely

to belong to Class 1.

3.	 Predictor Prior Probability: [P (x)] PPP refers to the

prevalence of the feature attribute in the dataset. For

example, if we have 20 samples in our dataset and 5 of

them have the feature attribute Loan, then the PPP of

Loan = 5/20 = .25.

4.	 Likelihood: [P (x | c)] Likelihood is the probability of

finding feature attribute x given c. It’s calculated by

dividing the number of samples with a particular class

label and attribute value by the total number of sam-

ples comprising that class. As an example, consider the

hypothetical precipitation study in two cities in the U.S.,

one with a cold winter and another with a warm winter.

Precipitation patterns in these two cities were observed

for 10 days for each city. The researchers recorded the

number of sunny days, cloudy days, and rainy or snowy

days. With the example Likelihood Table below, one can

compute the likelihood score for the attribute Rainy/

Probability  89

Snowy in City 1 with a warmer winter = 1/10 = 0.1.

The likelihood score for this attribute in City 2 with a

colder winter is = 7/10 = 0.7. The Likelihood Table also

calculates:

•	 The PPP, by dividing the totals by row by the total

number of samples.

•	 The CPP, by dividing the totals by column by the

total number of samples.

Likelihood Table

Weather
City 1

(warmer city)
City 2

(colder city) Total Likelihood
Sunny 6 1 7 (=7/20)
Cloudy 3 2 5 (=5/20)

Rainy/Snowy 1 7 8 (=8/20)
Total 10 10 20

Likelihood (=10/20) (=10/20)

There are several different variants of Naïve Bayes, each

suited to a particular dataset and problem scenario. Three of the

most popular are:

•	 Bernoulli Naïve Bayes (BNB) This method is well-suited

to spam detection and other text-based problems in

which the vectors have been encoded to indicate the

presence of a particular text string such as, “consolidate

debt.” If even a single instance of that string is found, the

message would be classified as spam.

•	 Multinomial Naïve Bayes (MNB) This method is well-

suited to text-based problems in which the vectors have

been encoded to indicate the frequency with which

a text string appears. This makes MNB an appropriate

method for such problems as document classification,

e.g., to determine whether a document is a contract or

90  Introduction to Artificial Intelligence for Security Professionals

not based on the frequency with which the text strings

“arbitration” and “breach” are found in the text.

•	 Gaussian Naïve Bayes (GNB) This method is appropri-

ate with continuous data that falls within a normal or

Gaussian distribution, e.g., data that describes the aver-

age height and weight of men and women in the United

States. We’ll examine Gaussian distributions and their

characteristics later in this chapter when we discuss the

Gaussian Mixture Model clustering algorithm.

THE NAÏVE BAYES IN ACTION
Now, let’s take a look at the Naïve Bayes in action. Our goal will

be to determine whether a given remote computer is running

Windows or Linux based on the network services it provides.

We’ll acquire the training data we need by scanning a network of

computers with known operating systems.

Once the training data is collected, vectorized, and imported

into scikit-learn, we can invoke Naïve Bayes to build our classi-

fication model. The classifier will begin by analyzing the vectors

in the table below to determine:

•	 The number of systems labeled as Windows (4) and

Linux (3).

•	 The HTTP, SSH, SMB, and FTP services provided by these

servers. For example, we can see that the first Windows

server provides only SMB and FTP services, while the

third Windows server provides HTTP and FTP only.

Probability  91

Label HTTP SSH SMB FTP
Windows 0 0 1 1
Windows 1 0 1 0

Linux 1 1 0 0
Windows 1 0 0 1

Linux 0 1 0 1
Windows 1 0 1 0

Linux 0 1 0 0

Next, Naïve Bayes calculates the Class and Predictor Prior

Probabilities as shown in the Likelihood Table below.

Label HTTP SSH SMB FTP

Total
Samples

per
Class

Class Prior
Probabilities

Windows 3 0 3 2 4 4 / 7 =
0.571428571

Linux 1 3 0 1 3 3 / 7 =
0.428571429

Total 4 3 3 3 7

Predictor
Prior

Probabilities

4 / 7 =
0.571428571

2 / 7 =
0.428571429

3 / 7 =
0.428571429

3 / 7 =
0.428571429

To calculate the CPP, Naïve Bayes divides the number of

occurrences of each class (Windows or Linux) by the total num-

ber of samples in our training set. In this case, we have computed

the Class Prior Probability of Windows as approximately .57 and

that of Linux as approximately .43. This is equivalent to pre-

dicting that a randomly selected sample is more likely to be a

Windows system (57%) than a Linux system (43%).

The Likelihood Table also shows the Predictor Prior

Probabilities, which were computed by dividing the sum of the

occurrences of each feature (across all samples) by the total

number of samples. For example, we can see that the PPP for

the HTTP feature is approximately .57.

92  Introduction to Artificial Intelligence for Security Professionals

No matter how carefully we perform our sampling, there

is a high likelihood that our dataset may contain feature/class

combinations that we failed to capture in our training set. If we

don’t compensate for this, Naïve Bayes will calculate a probabil-

ity score of 0 that a sample with those feature attributes belongs

to that class. This is a known problem with the Naïve Bayes

classifier that is rectified by analysts using a method known as

“smoothing.”

Smoothing compensates for feature values that would oth-

erwise be computed as having a 0% probability of occurring for

any class without materially affecting the influence on the prob-

ability score. A number of smoothing techniques can be applied.

In additive (also known as Laplace) smoothing, we add a value

alpha to the feature counts. (In this case, we’ll use an alpha

value of 1.) We also increase the class counts by a value equal to

d * alpha, in which d equals the number of classes. The revised

counts are shown in the table below. As we can see, the Windows

class count has been increased from four to six and the Linux

class count from three to five.

Label HTTP SSH SMB FTP
Class
Count

Windows 4 1 4 3 6
Linux 2 4 1 2 5

We can now recalculate our likelihood values as we did

before. In the case of HTTP and Windows, for example, the like-

lihood is:

4 / 6 = 0.6667

The likelihood table with our smoothed values appears

below.

Probability  93

Label HTTP SSH SMB FTP
Windows 0.6667 0.1667 0.6667 0.5

Linux 0.4 0.8 0.2 0.4

We’re ready now to apply these probability scores to our

test dataset to see how accurately we’re able to predict a new

sample’s class membership. In other words, we’ll calculate each

sample’s Posterior Probability. Let’s start with a sample with

the feature values shown below. (For now, let’s pretend we don’t

know the sample was labeled as Linux.)

Label HTTP SSH SMB FTP
Linux 1 1 0 1

In order to predict the sample’s class, we must calculate

its Posterior Probability twice; once for Windows and once for

Linux. The formula is:

P (Feature | Class) ^ FeatureValue * (1 – P (feature | class)) ^
(1 – FeatureValue)

We’ll proceed as follows:

HTTP:	 0.6667 ^ 1 * 0.3333 ^ 0 = 0.6667 * 1.0 = 0.6667
SSH:	 0.1667 ^ 1 * 0.8333 ^ 0 = 0.1667 * 1.0 = 0.1667
SMB:	 0.6667 ^ 0 * 0.3333 ^ 1 = 1.0 * 0.3333 = 0.3333
FTP:	 0.5 ^ 1 * 0.5 ^ 0 = 0.5 * 1 = 0.5

Now that we have the four feature values, we can generate

our Windows probability score by finding the product of these

scores and the presmoothing value of the Class Prior Probability.

(0.6667 * 0.1667 * 0.3333 * 0.5) * 0.571428571 = 0.010583598

94  Introduction to Artificial Intelligence for Security Professionals

Next, we’ll repeat the same calculation for Linux:

HTTP: 	 0.4 ^ 1 * 0.6 ^ 0 = 0.4 * 1.0 = 0.4
SSH: 	 0.8 ^ 1 * 0.2 ^ 0 = 0.8 * 1.0 = 0.8
SMB: 	 0.2 ^ 0 * 0.8 ^ 1 = 1.0 * 0.8 = 0.8
FTP: 	 0.4 ^ 1 * 0.6 ^ 0 = 0.4 * 1.0 = 0.4
(0.4 * 0.8 * 0.8 * 0.4) * 0.428571429 = 0.043885714

We can now compare the Posterior Probability results:

Windows probability:	 0.010583598
Linux probability:	 0.043885714

As we can see, Naïve Bayes has correctly predicted the sam-

ple as belonging to the class Linux.

NAÏVE BAYES SESSION PROCESS
As a supervised learning method, Naïve Bayes analysis pro-

ceeds through the same sequence of training, validation, and

testing phases that we described previously for logistic regres-

sion and decision trees in Chapter 2. When training is complete,

the resulting model takes the form of a Likelihood table and its

associated Class and Predictor Prior Probability values. During

the subsequent validation and testing phases, the model is

exposed to testing data and assessed for accuracy with confu-

sion matrices and ROC curves. Once this process is completed

successfully, the trained model is applied to new, unlabeled data

to make class predictions.

NAÏVE BAYES PITFALLS AND LIMITATIONS
Naïve Bayes is surprisingly effective in producing accurate

classifications based on computed priors, although with some

limitations:

Probability  95

•	 As noted earlier, Naïve Bayes assumes that features are

conditionally independent. In most real-world problem

scenarios, this assumption is untrue. Despite this, Naïve

Bayes often produces excellent results.

•	 When the dataset available is sparse, we may not be able

to capture all of the actual feature/class combinations that

exist in the underlying data environment. Fortunately,

we can ameliorate these effects with Laplace and other

smoothing techniques.

Clustering with the Gaussian Mixture Model Algorithm

In Chapter 2, we introduced the concept of unsupervised learn-

ing and described how the k-means and DBSCAN algorithms

assign vectors to clusters. As we saw, neither algorithm used

probability measures to make these assignments. Instead, vec-

tors were assigned to clusters based on their relative locations

in feature space. In this section, we’ll examine a different clus-

tering technique that does make use of probability measures.

Specifically, we’ll consider how the Gaussian Mixture Model

(GMM) algorithm utilizes probability scores to assign vectors to

clusters and the decided advantages of this approach in certain

problem scenarios.

Consider the clustering example in Figure 3.5. The plot

to the left shows two sets of vectors, one in light gray and the

other in dark gray. The plot in the middle shows the cluster-

ing results after using the k-means algorithm. The plot to the

right shows the clustering results produced by GMM. As we can

see, k-means, utilizing its default Euclidean distance method,

is unable to properly detect clusters that overlap or possess a

non-circular shape. In contrast, GMM is able to do so.

96  Introduction to Artificial Intelligence for Security Professionals

Before we can consider how GMM works, we must first

understand several key principles, beginning with the nature of

Gaussian or Normal distributions.

GAUSSIAN DISTRIBUTIONS
Imagine we’re interested in analyzing the distribution of heights

among a group of 20,000 middle school students in a hypothet-

ical school district known as Jefferson Township. We have a

number of options for representing this data. For example, we

can utilize a histogram as shown in Figure 3.6, with the height of

students in centimeters increasing from left to right along the x

axis and the quantity of students with the corresponding heights

shown on the y axis. Each vertical bar represents a “bin” of stu-

dents sharing a common range of heights.

As we can see, the largest number of students appear near

the center point of the distribution at a height of 160 cm. We

can also express this by saying that 160 cm is the height value

that appears most frequently among our student population.

The bin to the immediate right of center represents the number

True Clusters

Fe
at

ur
e

2

Feature1 Feature1 Feature1

K-Means GMM

10

5

0

-5

-10

-10 -5 0 5 10 -5 0 5 -5 0 5

FIGURE 3.5:� Comparison of K-Means and GMM

Probability  97

of students with a height ranging from 160–162 cm. The bin to

the left of center represents students with heights ranging from

158–160 cm.

The center point is referred to variously as the mean,

median, or mode. The terms have slightly different meanings

but, for our purposes, the term mean will suffice. The mean rep-

resents the average value of the feature we’re measuring in our

distribution. In this example, we can compute the mean height

of our students by adding up all of the height measurements in

all of the bins and then dividing the sum by the total number of

students. Let’s assume we’ve done so and found that the mean

really is equal to 160 cm.

As shown in Figure 3.7, we have additional options for plot-

ting our Gaussian distribution. Here, the y axis indicates the

ratio of students at each height value. The ratios were calculated

by dividing the number of students in each bin (the frequency)

by the total number of students.

The plot on the left is a histogram of the height of students

expressed as ratios while the plot to the right is the smooth,

Fr
eq

ue
nc

y

Height

Student’s Height

5,000

3000

1000

0

 130 140 150 160 170 180 190

FIGURE 3.6:� Height of Middle School Students in Jefferson Township

98  Introduction to Artificial Intelligence for Security Professionals

bell-shaped curve fitted to the histogram. Once again, we can

see that the largest proportion of students (about 75%) lie closest

to the 160 cm mean, while the shorter and taller students are

distributed symmetrically on either side.

Although the largest number of students stand about 160

cm, there are also some very tall and very short students too.

As we move left and right away from the mean, the quantity of

students with these smaller and larger heights decreases sym-

metrically until none remain. This symmetry around the mean

is one of the most recognizable qualities of a Gaussian distribu-

tion and accounts for its characteristic bell-shaped curve.

Computing Standard Deviation and Variance
Every Gaussian distribution can be uniquely identified by its

mean and its variance (or standard deviation). Both variance

and standard deviation measures indicate the width of the distri-

bution and its variability with respect to the mean. If the SD or

variance is small, we can expect the distribution to be a narrow

one, with the data points densely packed around the mean. If the

Height(cm)

Student’s Height Student’s Height

 100 120 140 160 180

Height(cm)

 100 120 140 160 180

Ra
tio

0.10

0.08

0.06

0.04

0.02

0.00

0.10

0.08

0.06

0.04

0.02

0.00
Ra

tio

FIGURE 3.7:� �Histogram and Smooth Curve Versions of Gaussian
Distributions Expressed as Ratios

Probability  99

SD and variance are large, the data distribution will be spread

out accordingly. The only difference between the two metrics

concerns their units of measurement. Variance is equal to SD2.

Therefore, in our student heights example, SD and Variance

would be expressed in cm and cm2 respectively.

Let’s begin by computing the variance for two students of

155 cm and 165 cm heights from a population with an average

height of 160 cm. The process is a simple one:

1.	 We compute the deviation first by subtracting the popu-

lation average from each subject’s height and then square

the result:

(155-160)2=25
(165-160)2=25

2.	 To finish, we simply compute the average of the squared

deviations:

(52+52)/2 = 25 cm2

Once we know the variance, it’s easy to convert this to SD

by taking its square root. Based on the example above, the SD

would be √25 = 5 cm. This means that one SD will encompass

samples that fall within the area 5 cm on either side of the 160

cm mean. Two SDs will encompass samples that occupy the next

5 cm on either side after that, etc. Figure 3.8 shows the data

points that fall within one SD on either side of the mean.

SD is useful in helping us visualize the probability of finding

a sample with a given attribute value. As we can see, we are most

likely to find student heights in the range of 155 cm to 165 cm

and significantly less likely to find students with height values at

the extreme left and right.

100  Introduction to Artificial Intelligence for Security Professionals

Applying Gaussian Distribution Concepts to Clustering
Consider a scenario in which we mistakenly collected data on

the heights of both middle school and elementary school stu-

dents and that we failed to record which school each of these

students attended. Having mixed our samples together, would it

be possible to “un-mix” them somehow?

It would be reasonable to expect that elementary students,

on average, will be shorter than their middle school counter-

parts. We might also expect that the distribution of heights

among the two groups would be somewhat different, since ele-

mentary schools typically educate students from kindergarten

through fifth grade while middle schools serve children in grades

six through eight.

Continuous variables, such as student heights, can usually

be fitted to a Gaussian distribution. We also know that every

Gaussian distribution can be uniquely identified by its mean and

variance parameters. Therefore, it should theoretically be possi-

ble to distinguish the two groups of students from one another.

In machine learning terms, we should be able to assign each

student to the elementary or middle school cluster based on the

values of the feature, student height.

 145 150 155 160 165 170 175

FIGURE 3.8:� �The shaded area of the curve shows the portion of the
distribution that falls within one standard deviation on either
side of the mean.

Probability  101

GMM is able to accomplish this by analyzing the dataset of

student heights and identifying the unique mean and variance

parameters that define each cluster. Next, it uses these and sev-

eral other parameters we’ll examine shortly to compute how likely

each student is to belong to each of the clusters. The student is

then assigned to the cluster with the highest probability score.

In Figure 3.9, we can see that GMM has successfully recon-

stituted the separate Gaussian distributions for the elementary

and middle school students. As before, the plots on the left

and right show these Gaussian distributions as histograms and

smoothed curves respectively.

Please note we have explained these concepts with simplified

illustrations and examples for purposes of clarity and compre-

hension. For example:

•	 In Figures 3.7 and 3.8, we referred to the measures

on the y axis as ratios. However, for technical rea-

sons, the more accurate terms is density. To learn

more about density and its role in solving probabilistic

Height(cm)

Student’s Height Student’s Height

 100 120 140 160 180

Height(cm)

 100 120 140 160 180

Ra
tio

0.05

0.04

0.03

0.02

0.01

0.00

Ra
tio

0.05

0.04

0.03

0.02

0.01

0.00

FIGURE 3.9:� �GMM Divides the Elementary and Middle School Students
into Clusters Based on their Unique Gaussian Distributions

102  Introduction to Artificial Intelligence for Security Professionals

problems, please refer to https://en.wikipedia.org/wiki/

Probability_density_function

•	 Our discussion of variance was based on a problem

scenario utilizing a single feature only. However, proba-

bilistic problems typically involve multiple features and

require an analysis of their associated covariance rela-

tionships. To learn more about covariance and its role

in solving probabilistic problems, please refer to https://

en.wikipedia.org/wiki/Covariance

Let’s take a closer look now at the process GMM uses to

assign data points to clusters.

EXPECTATION MAXIMIZATION
To perform clustering, GMM employs Expectation Maximization

(EM), an iterative two-step optimization process that is also used

by many other machine learning algorithms to solve probabilis-

tic problems. To begin, the analyst sets four initial values:

•	 Fixed Hyperparameter: Number of Mixtures This deter-

mines how many clusters will be created. In GMM, we

use the term mixtures rather than clusters because

the assignment of data points to groups is achieved by

“un-mixing” a collection of discrete Gaussian distribu-

tions or mixture components. The choice of mixture

number is usually an intuitive one based on the nature

of the problem, the degree of precision required, and the

analyst’s domain expertise. In a spam detection problem,

for example, the analyst will most likely be interested in

defining only two mixtures, one for spam and another for

legitimate email. However, more advanced methods of

optimizing the number of mixture components can also

be used.

Probability  103

•	 Parameter 1: Mixture Proportion (MP) This is an esti-

mate of the proportion of samples that belong to each

mixture component. In our school heights example,

the analyst might decide to initially set the MP for the

elementary school mixture to equal two thirds of the stu-

dents and assign the remaining third to students from

the middle school. MP is expressed in probability terms,

with values ranging from 0-1. Consequently, the elemen-

tary and middle school mixtures would be assigned MPs

of approximately .66 and .34 respectively.

•	 Parameter 2: Mean This is the average value of the data

distribution for each mixture component, e.g., the aver-

age height of students in our elementary school and

middle school mixture components respectively.

•	 Parameter 3: Variance (Standard Deviation) This defines

how concentrated the data is with respect to the mean.

The analyst often estimates this for each mixture com-

ponent based on their experience and the nature of the

dataset. For example, if the feature used for clustering

exhibits a wide range of values, a correspondingly large

SD parameter would be chosen.

It’s desirable, but not essential, for the initial set of MP,

Mean, and SD/Variance values to be realistic ones. However,

over the course of multiple GMM iterations, these parameters

will progressively be refined until the analyst is satisfied with

the clustering model’s performance or the maximum number of

iterations has been reached.

Step 1: Expectation
In this step, GMM uses each mixture’s mean, variance, and mix-

ture proportion parameters to assign a probability score between

0 and 1 to each data point. This indicates which of the Gaussian

104  Introduction to Artificial Intelligence for Security Professionals

distributions is responsible for that data point—the probability

that it belongs to each of the mixture components. In the case of

our student heights, each student will be assigned two respon-

sibility scores: one each for the elementary and middle school

mixture components. After that, the data point is assigned to the

mixture component with the highest responsibility score.

Once GMM finishes assigning responsibility scores to all of

the data points, it proceeds to the Maximization stage.

Step 2: Maximization
During this step, weighted averages are computed and then used

to modify the mean and variance parameters. This process pro-

ceeds as follows:

1.	 GMM recalculates the mixture proportions by adding

up the responsibility scores for each mixture and then

dividing the sum by the total number of data points. In

our height example, GMM would add up the responsibil-

ity scores for the middle school mixture component and

then divide this by the total number of students. Then

it would repeat this process for the elementary school

mixture component.

2.	 GMM updates the mean by computing a weighted

average.

•	 GMM multiplies the feature value for each mixture

member by its corresponding responsibility score to

produce a weighted value. For example, a student

with a height of 120 cm and a responsibility score

of .9 of belonging to the elementary school mixture

component would be assigned a new weighted height

value of 108 cm (120 cm*.9=108 cm.).

•	 GMM computes a new weighted mean for each mix-

ture component. It accomplishes this by summing

Probability  105

the total weighted values for that mixture compo-

nent and then dividing the total by the sum of that

mixture’s responsibility scores. Next, it repeats the

same process with each of the remaining mixture

components.

3.	 GMM calculates a new variance for each mixture compo-

nent. Earlier, we introduced variance as a simple average

of the squared differences between heights and the mean.

Now, however, we use the weighted average to compute

this instead.

Step 3: Iteration of EM Cycle
Using the revised parameters, GMM repeats the EM cycle multi-

ple times, producing new responsibility scores and then applying

them to modify the mixture parameters. The process continues

until one of two things occur. Either the values stop changing

within a predefined level of tolerance (i.e. the weighted means

remain constant within a range of 1%), or the predefined num-

ber of EM iterations has been completed. At that point, each

data point will have been appended a responsibility score that

indicates its most probable mixture membership.

The acceptable tolerance for accuracy will be determined

by the analyst based on their domain expertise, the nature of

the clustering problem, and the associated risk. For example,

a wide tolerance for errors may be acceptable in detecting an

email as spam but not in detecting a banking transaction as a

fraudulent one.

The resulting GMM model consists of a vector containing the

mixture proportion, mean, and variance values that define each

Gaussian distribution. The model can then be applied to new

data to generate responsibility scores that indicate each data

point’s most likely mixture membership.

106  Introduction to Artificial Intelligence for Security Professionals

GMM PITFALLS AND LIMITATIONS
As we’ve seen, GMM’s use of probability methods to define clus-

ters has several advantages over the k-means and DBSCAN

algorithms we discussed in Chapter One, albeit with certain

limitations:

1.	 The analyst must choose the correct number of mixture

components to create.

2.	 GMM requires continuous data, such as the student

heights we used in our example. It also works best when

the data conform to a Gaussian distribution.

3.	 Our example of GMM utilized only a single feature

(height) for simplicity. In practice, GMM works best with

feature spaces of six dimensions or less. After that, GMM

becomes increasingly expensive computationally and

may ultimately fail to achieve convergence.

Detecting SMS Spam with Gaussian Mixture Models
and Naïve Bayes

SMS spam is an intrusive, obnoxious, and often fraudulent

attempt by unscrupulous marketers to rope mobile phone users

into making purchases or, worse, providing personal information

to attackers perpetrating phishing schemes. Fortunately, appli-

cation developers have become increasingly adept at utilizing

probabilistic methods to detect these messages. We’ll consider

two examples of probabilistic SMS spam detection using the

GMM and Naïve Bayes algorithms furnished with scikit-learn.

First we’ll need a dataset to work with. We’ll use the SMS

Spam Collection Data Set that can be downloaded in zip file

format from the Center for Machine Learning and Intelligent

Systems website at https://archive.ics.uci.edu/ml/datasets/

SMS+Spam+Collection.

Probability  107

Next, we extract and load the SMSSpamCollection text file.

When we examine the file contents, we notice that the first word

in each line is actually a label indicating whether the message is

spam or ham (a benign message). As shown below, the text file

contains significantly more ham messages than spam ones. We’ll

be performing clustering on an unsupervised basis, so we won’t

be using these labels to assign samples to clusters. However,

the labels will enable us afterward to assess the accuracy of our

clustering results.

In order to prepare these messages for analysis, we’ll analyze

the transitions between each sequential set of two characters in

every character string, a process known as bigram analysis. For

example, in the first spam message that begins, “Free entry,”

we’ll observe the transitions between the letters F and r, r and

e, e and e, etc. When we calculate the frequency with which

each type of transition occurs, the models we train will be able

to determine if a message is benign or an attempt to advertise

or subvert.

Vectorizing

One way to analyze text strings is to consider each character to

be a member of a particular character class. We’ll be using four

character classes in our example:

108  Introduction to Artificial Intelligence for Security Professionals

•	 Letters

•	 Digits

•	 Punctuation

•	 Whitespace

Using these character class definitions, we’ll convert the text

string “abc123” into a character class sequence. We’ll assign

character Class 0 to letters and character Class 1 to digits. This

produces the following sequence:

Character String a b c 1 2 3
Character Class Sequence 0 0 0 1 1 1

Now, we can convert this sequence into a set of bigrams.

0, 0
0, 0
0, 1
1, 1
1, 1

Next, we count the number of unique bigrams and discover

that there are two instances of (0, 0), one instance of (0, 1), two

instances of (1, 1), and zero instances of (1,0). We use these

sums to construct the following matrix:

2 1
2 0

Our final data preparation step is to flatten the matrix into a

vector suitable for use by the GMM and Naïve Bayes algorithms.

Each of the resulting vectors will be comprised of 16 dimen-

sions (four possible character classes for the first character *

four possible character classes for the second character). By

limiting the number of dimensions in this way, we’ve ensured

that our GMM and Naïve Bayes computations will run easily on a

Probability  109

personal computer without unduly sacrificing our classification

and clustering accuracy.

Example 1: SMS Spam Identification with GMM

Now that we have our vectors, we’re ready to begin our GMM anal-

ysis session. As we’ve done throughout this book, we’ll be using

scripts we developed expressly to illustrate machine learning con-

cepts based on the functions provided by the scikit-learn library.

This particular GMM script is named cluster_with_gmm.py.

As we can see, this version of the GMM algorithm accepts a

variety of hyperparameters, although only the path to the data-

set is required.

If we run cluster_with_gmm.py with its default settings, it

produces one cluster only.

The ham/spam proportions of this cluster are interesting,

but, what we really want to know is which messages are spam

and which are benign. Therefore, we’ll set n (number of compo-

nents) to two and then run the command again.

110  Introduction to Artificial Intelligence for Security Professionals

On the plus side, we can see that Cluster 0 is comprised

almost exclusively of ham messages. However, Cluster 1 is split

about 60/40 percent respectively between spam and ham mes-

sages, so further refinement of our hyperparameter settings will

be needed. Let’s experiment with the Covariance settings tied,

diag, and spherical.

The tied setting has produced the best results, with roughly

95% of the ham samples assigned to Cluster 0 and 97% of the

spam samples assigned to Cluster 1. Although we performed

clustering in an unsupervised fashion, we know from the labels

provided with our dataset that these cluster assignments are

quite accurate ones. We’ll finish up by exporting the samples in

each cluster so we can view the actual messages. We’ll use the –r

flag (print out results per sample) for this.

As we can see, almost all of the spam and ham messages

have been correctly classified.

Probability  111

Example 2: SMS Spam Identification with Naïve Bayes

This time, we’ll take a supervised learning approach to spam

detection using the labels supplied with our dataset. We can also

reuse the same vectors and character class sequences as before.

Typically, we would begin by dividing our samples into separate

training, testing, and validation sets. For simplicity, however,

we’ll illustrate the training process only.

We’re using a multinomial Naïve Bayes function provided

by scikit-learn named MultinomialNB to build our model. Once

again, the only required parameter is the path to the dataset.

When we run it with its default configuration (alpha = 1.0,

fit_prior = False), we find the classifier has achieved an average

accuracy of roughly 95%.

Let’s see if we can improve the accuracy by enabling Naïve

Bayes to learn the class prior probabilities. We accomplish this

by changing the fit_prior hyperparameter setting to true.

112  Introduction to Artificial Intelligence for Security Professionals

As we can see, we’ve managed to increase the model’s aver-

age accuracy to roughly 96%. We can now apply the model to

new samples.

When we do, the model predicts that the message should be

classified as ham.

This second message has been classified as spam.

Probability Modeling Takeaways

In this chapter, we considered a variety of probability concepts

and illustrated how the Naïve Bayes and Gaussian Mixture

Model algorithms employ measures of probability to perform

their respective classification and clustering functions. Some of

the key points included:

•	 The difference between conditional and joint probability.

Conditional probability is concerned with determining

the likelihood that Event B will follow Event A while joint

probability is concerned with determining the likelihood

that both events will occur simultaneously.

•	 In contrast to the Bayes Theorem, the Naïve Bayes clas-

sifier assumes class conditional independence, meaning

that each feature is considered to have no influence on

Probability  113

any other in making classification decisions. While the

assumption is almost always wrong, Naïve Bayes often

produces excellent results and with great efficiency

since it requires only four components to classify a sam-

ple. These include: Posterior Probability, Class Prior

Probability, Predictor Prior Probability, and Likelihood.

•	 Every Gaussian distribution can be uniquely identified

by its mean and its variance (or standard deviation).

GMM performs clustering via an iterative Expectation

Maximization process that generates scores that indi-

cate which Gaussian distribution is most likely to be

responsible for each data point. Consequently, GMM

can properly detect clusters that overlap or possess

a non-circular shape. GMM requires the analyst to set

only one hyperparameter: number of mixtures. Then,

GMM assigns data points to clusters by computing the

mixture proportion, mean, and variance for each of the

mixture components. However, GMM is only suitable for

solving problems in which the underlying data is com-

prised of continuous values and the samples conform to

a Gaussian distribution.

115

Deep Learning

4

In previous chapters, we considered how various

machine learning approaches could be applied to solve a clus-

tering or classifi cation problem. Although the details varied,

the process proceeded through a relatively simple sequence

of operations. An algorithm would receive a set of vectors as

input, perform a calculation, and then produce a label or clus-

ter assignment as output. In the case of logistic regression, for

example, the classifi cation engine computed regression weights.

To perform clustering, k-means calculated Euclidean and other

distances between vectors and their centroids.

Analysts could control how these calculations were per-

formed and the results they obtained by utilizing a variety of

parameters and hyperparameters. With logistic regression, for

example, analysts could apply regularization and penalty param-

eters that infl uenced how the weights were calculated. Various

optimization functions could also be applied to determine such

116  Introduction to Artificial Intelligence for Security Professionals

things as the minimum size of each weight correction and what

constituted a sufficient level of convergence. However, these

were essentially methods for fine-tuning each algorithm’s behav-

ior in much the same way the engine in a car can be controlled

by manipulating the flow of fuel or the rate of combustion. While

essential, these ancillary functions did not—in and of them-

selves—produce a classification or clustering decision, nor was

it customary to send the output from one kind of algorithm to

the input of another.

Deep learning is based on a fundamentally different approach

that incorporates layers of processing with each layer performing

a different kind of calculation. Samples are processed layer-by-

layer in stepwise fashion with the output of each layer providing

the input for the next. At least one of these processing layers will

be “hidden.” It is this multi-layered approach, employing hidden

layers, that distinguishes deep learning from all other machine

learning methods.

The term deep learning actually encompasses a wide range

of unsupervised, semi-supervised, supervised and reinforce-

ment learning methods primarily based on the use of neural

networks, a class of algorithms so named because they simulate

the ways densely interconnected networks of neurons interact

in the brain.

Originally conceived in the 1950s, neural networks received

a great deal of attention in the 1980s thanks to their potential

to produce “intelligent machines” that could “think” and solve

problems as well as humans. By the end of that decade, how-

ever, the enthusiasm for this nascent technology began to wane.

The computers of the day were simply not powerful enough to

handle the processing loads required to solve the most complex

and interesting problems. Researchers also found it difficult to

obtain the massive datasets needed to adequately train neural

Deep Learning  117

network models. Consequently, many researchers turned their

attention to machine learning approaches that were more eco-

nomical from a dataset and processing perspective.

Renewed interest in neural networks was sparked in 2005

and 2006 thanks to the efforts of artificial intelligence research-

ers Geoff Hinton, Yoshua Bengio, Yann Lecun, and Jurgen

Schmidhuber, among others, who demonstrated that neural net-

works were not only practical, but also capable of solving complex

problems—such as speech recognition and image categoriza-

tion—much more accurately than existing methods. Graphics

Processing Units (GPUs) like those incorporated in gaming con-

soles could now provide the computing horsepower needed to

run neural network algorithms both efficiently and affordably.

Massive online databases also become available thanks to the

explosive growth of the Internet. Software giants like Google and

Microsoft began investing heavily in deep learning research. A

spate of new products incorporating deep learning technologies

began to emerge soon afterward. Today, neural networks have

been incorporated into such mainstream products as Google’s

Android operating system and Apple’s Siri voice-activated digital

assistant. Deep learning has also been shown to be very effective

in addressing a wide spectrum of network security issues.

In this chapter, we’ll describe two different types of neural

network algorithms:

1.	 Long Short-Term Memory (LSTM), a type of Recurrent

Neural Network (RNN)

2.	 Convolutional Neural Network (CNN)

Please note: Neural networks are extremely flexible, gener-

al-purpose algorithms that can solve a myriad of problems in

a myriad of ways. Unlike other algorithms, for example, neu-

ral networks can have millions or even billions of parameters

118  Introduction to Artificial Intelligence for Security Professionals

applied to define a model. For simplicity, we’ll focus exclusively

on neural network capabilities for solving a classification prob-

lem along with a small set of representative hyperparameters.

We’ll conclude with a practical, hands-on example that shows

how LSTM and CNN models can be applied to determine the

length of the XOR key used to obfuscate a sample of text.

A Generic Neural Network Architecture

As shown in Figure 4.1, neural networks are composed of nodes

contained within input, hidden, and output layers. Each layer

X11

X12

X13

X14

X15

X16

X17

X18

X19

X110

X111

X112

X113

X114

X115

Information Flow

Input Layer

Output Layer
(Active Nodes)

Hidden Layer
(Active Nodes)

X21

X22 X31

X32X23

X24

FIGURE 4.1:� A Generic Neural Network Architecture

Deep Learning  119

plays a particular role in computing a classification. In a fully-con-

nected network, like the one shown here, the output of every

node in a given layer is connected to the inputs of every node in

the layer that follows. This is also an example of a feed-forward

neural network, in which information passes directly from one

layer to the next without ever backtracking, until it reaches the

output layer, where a classification decision is assigned.

As we shall see, however, this is only one of many possible

configurations. Neural networks can also employ feedback loops

between layers and utilize partially-connected architectures

that restrict the flow of information to certain nodes only. Let’s

begin, however, by examining the layers that comprise one of

the fully-connected feedforward types.

INPUT LAYER
The nodes in the input layer are passive. They simply receive

attribute values for a particular sample and then pass them

on to all of the nodes in the first hidden layer for processing.

Consequently, the input layer must contain a node for every

feature in the sample set. If we were categorizing pictures with

a 64 pixel x 64 pixel resolution, for example, we would config-

ure an input layer with 4,096 input nodes, one for each pixel.

In solving a language processing problem, the relevant features

might include the number of unique words in the sample we’re

analyzing, the frequency with which each word appears, etc.

HIDDEN LAYER(S)
Hidden layers are composed of nodes like the one in Figure 4.2

that perform the heavy lifting of the deep learning process. Since

this is the first node in the first hidden layer, this processing pro-

ceeds as follows:

120  Introduction to Artificial Intelligence for Security Professionals

•	 Receiving feature values from the input layer: All of the

attribute values for the first sample are received on the

node’s inputs x
1
-x

m
.

•	 Applying weights: Each attribute value is then multi-

plied by a corresponding weight value, e.g., the attribute

on input x1
 is multiplied by weight w

1
, the attribute on

x
2
 is multiplied by weight w

2
, etc. If the magnitude of the

weight value is greater than one, then the contribution

of that feature to the eventual classification decision will

incrementally increase. If the magnitude is less than one,

its contribution will be decreased accordingly. This pro-

cess is similar to the way regression weights are utilized

in logistic regression. With neural networks, however, it’s

the aggregate processing across all of the hidden layers

that ultimately determines the classification decision,

not the processing within a single hidden layer.

		 In addition to feature weights w1-
w

m
, you will notice

a weight value labeled w
0
.

This is the bias or y-intercept

value for node #1. As we saw in previous chapters, the

bias enables the decision boundary in feature space to

Input Weights
Net Input
Function

Activation
Function

Output∑X1

X2

Xm

Wm

W2

W1

W0

1

FIGURE 4.2:� Node #1 in Hidden Layer #1

Deep Learning  121

be moved away from the origin point on the y-axis to a

location that provides the best fit for the sample data.

		 Every input on every node in the hidden layers is

initialized with different weight values, which are incre-

mentally optimized until the desired level of accuracy is

achieved. Analysts can set these initial weights randomly,

use functions to ballpark appropriate initial values, or

set them based on their previous experience with similar

problems and datasets.

•	 Summing the products: The products are then sent to a

Net Input function that calculates the sum of the prod-

ucts and passes the result to an activation function for

additional processing.

•	 Applying the activation function: The activation func-

tion performs the particular calculation specified for

that layer. Analysts can choose from among a large set of

activation functions based on the nature of the problem

scenario and the sequence of computations required to

produce a solution.

•	 Outputting the result: The result of this activation func-

tion is a numeric value that reflects the aggregate effects

of that node’s processing. Each of these values represents

a different proportion of weights and combinations of fea-

ture attributes. By processing all of these combinations

and passing the results onward to additional hidden lay-

ers, neural networks are able to determine step-by-step

which combination of features and weights will most

accurately predict a sample’s class assignment.

Processing in Hidden Layers 2-n
Every node in hidden layer #2 receives the output values from

all of the nodes in hidden layer #1. Once again, each of these

122  Introduction to Artificial Intelligence for Security Professionals

values is multiplied by a particular weight value, the products

are summed, and then the results are subjected to an activation

function to produce a new output for the next layer, where the

process repeats. This continues until all of the hidden layers

have been traversed and the results of those calculations arrive

at the output layer.

OUTPUT LAYER
The output layer is the final layer in the neural network. Since

ours is a classification exercise, the output layer will incorpo-

rate a node for every possible class assignment. Like those in

the hidden layers, the nodes here are active, meaning they too

can incorporate activation functions. For example, a logit or

softmax activation function can be applied to convert the clas-

sification decision into a probability score. The node with the

highest score will determine which class label to assign.

After each training cycle, a loss function compares the

classification decision to the class labels to determine how the

weights in all of the hidden layers should be modified to produce

a more accurate result. This process repeats as many times as

required before a set of candidate models can proceed to the

validation and testing phases.

Please note: It’s beyond the scope of this document to

describe how optimizers interact with backpropagation pro-

cesses to calculate and apply weight changes and how these

processes are applied differently when training LSTM and CNN

models. Readers who would like to learn more…

Increasing Levels of Abstraction

As noted earlier, a sample’s feature values are only visible to

the nodes in the input layer and first hidden layer. All subse-

quent layers can only “see” the combined output values from

Deep Learning  123

the nodes in the previous layer and thus “observe” samples in

aggregate at increasing levels of abstraction. This is similar in

concept to how our brains perceive and interpret sensory input.

In the case of vision, for example, the role of the input layer is

played by the retina, which fires off electrical signals to the visual

cortex based on the intensity of the light energy it receives from

a “sample” of photons. There, multiple “hidden layers” apply

different kinds of visual “activation functions.” For example, one

layer might perform edge processing, another might consolidate

edges into shapes, and a third might associate that shape with

a category, such as “face.” Neural networks make it possible to

perform this kind of processing in an extremely granular way,

progressing from low level signals to complex decisions through

an ordered sequence of multilayered hierarchical calculations.

How Many Hidden Layers Are Needed?

Generally speaking, the more hidden layers we use the more

overall capacity the neural network has to solve complex,

data-intensive problems. As always, however, there are tradeoffs.

Neural networks with excess capacity may produce models that

over-fit the data. Neural networks with insufficient capacity may

produce models with unacceptable error rates.

During a session, an analyst will typically increase a mod-

el’s capacity until over-fitting is observed and then reduce the

number of layers accordingly. Layer and node density can also

be modified programmatically by applying ancillary algorithms

that, for example, eliminate unnecessary or redundant layers.

While the specific mechanisms are somewhat different, the

effect is similar to the way hyperparameters can be applied to

prune unnecessary branches from a decision tree.

124  Introduction to Artificial Intelligence for Security Professionals

The Long Short-Term Memory (LSTM) Neural Network

Our discussion, so far, has focused on feedforward, fully-

connected neural networks like the one shown in Figure 4.1.

This architecture is suitable when the problem we’re solving

doesn’t require us to consider the sequence in which samples

arrive at the input layer for processing. When classifying a series

of animal images, for example, we don’t need to consider how

the classification of the first image as cat might influence the

classification of the second image as dog. Feedforward networks

have no notion of time. They operate in the present moment

only, unable to “remember” any of the samples they processed

previously.

Many interesting problems, however, do require us to con-

sider how the meaning of one sample might influence the

meaning of another that occurs at a later time. For example, we

cannot deduce the plot of a movie by examining a single frame.

It’s the sequence of frames in time that supplies the meaning

and context. Likewise, we cannot identify a suspicious connec-

tion by examining a single packet. It is the sequence of packets

in time that allows us to determine whether an exploit may

have occurred. For time-series problems like these, a Recurrent

Neural Network (RNN) is the more appropriate choice.

RNNs are distinguished from the feedforward type by their

ability to consider not only the current input, but also its rela-

tionship to the input that immediately preceded it. It is in this

sense that recurrent networks are said to possess “memory.” To

accomplish this, recurrent networks employ feedback loops. As

shown in Figure 4.3, the sample values from the output layer are

being copied back to the nodes in the first hidden layer. There,

they are combined with the input values of the next sample in

Deep Learning  125

the sequence. This process repeats until all of the samples have

been processed.

A more technical way to describe this is to say that recur-

rent networks track the hidden states of samples in which a

state comprises all of the current values within a hidden layer.

As shown in Figure 4.4, recurrent networks feed the state of the

preceding time-step as input to the hidden state of the current

time-step. This enables the neural network to track how the hid-

den states are changing from one time-step to the next.

The simplest kinds of RNNs are limited with respect to how

many time-steps in a sequence they can remember. In other

words, simple RNNs have trouble maintaining context. If, for

example, an RNN must be able to remember the first through

Input Layer

Hidden Layer

Output Layer

FIGURE 4.3:� A Simple Recurrent Neural Network

126  Introduction to Artificial Intelligence for Security Professionals

tenth packets in a sequence in order to properly classify a

connection as suspicious, then it will fail if it’s only capable of

maintaining context for packets 1–9. This limitation has been

addressed by modifying the RNN architecture to include Long

Short-Term Memory Units, which give this neural network

architecture its name.

In an LSTM network, the nodes in each hidden layer are

replaced by memory blocks, each of which can contain one or

more memory cells like the one shown in Figure 4.5. Unlike

hidden layer nodes, memory blocks are not equipped with activa-

tion functions. Instead, they utilize gates, which determine how

and when the states stored in each cell should be updated and/

or passed on to memory blocks in the subsequent hidden layer.

Outputs

Hidden
States

Inputs Previous State

1x1

FIGURE 4.4:� Tracking Hidden States

Deep Learning  127

There are three types of gates, each equipped with its own weight

setting:

•	 The forget gate recurrently multiplies the current state

of each cell by a weight equal to 1. This has the effect of

maintaining the cell’s current state indefinitely until it’s

exposed to state values originating from new samples or

from feedback loops. If the forget gate’s weight values are

set high, it will allow new state information to enter the

f

f

h

g

f

Cell

Output Gate

Forget Gate

Input Gate

Block

FIGURE 4.5:� An LSTM Memory Block Containing One Cell

128  Introduction to Artificial Intelligence for Security Professionals

cell, partially or completely overwriting it. If set low, the

cell values will remain mostly unchanged.

•	 The input gate opens to admit new state values or closes

to preserve the current ones.

•	 The output gate opens to allow state values to be passed

on to memory blocks in the next hidden layer or closes

to prevent this.

Gates enable LSTMs to retain and reuse relevant informa-

tion spread across very long sequences of time-series data. This

process is somewhat analagous to the ways learning occurs in

humans. In the brain, “gates” determine whether information

should be allowed to pass from one neuron’s “memory block”

to the next. Only those that pass meaningful information are

allowed to forge strong connections and pass on their state val-

ues to memory blocks in subsequent hidden layers.

The Convolutional Neural Network (CNN)

Unlike the neural networks we examined previously, CNNs do

not utilize a fully-connected architecture. Instead, each convo-

lution layer connects its nodes only to contiguous sets of nodes

in the previous layer. In Figure 4.6, for example, Node 1 in Layer

2 is connected exclusively to Nodes 1-3 in Layer 1. From a tech-

nical standpoint, we would say that Node 1 is a function of these

three nodes. The same is true for Nodes 2 and 3 in that layer.

Each of these is a function of the three contiguous nodes they

connect to in Layer 1.

To define these connections, we use the CNN hyperparameters

size and stride. Size determines the quantity of contiguous nodes

connected in this way, while stride determines how many nodes

are skipped. In Figure 4.6, for example, size has been set to 3

Deep Learning  129

and stride has been set to 1. Consequently, none of the Layer 1

nodes have been skipped.

In Figure 4.7, by contrast, both size and stride have been set

to 2. Consequently, each node in Layer 2 is a function of only

two nodes in Layer 1. In addition, the stride setting has caused

Node 2 in Layer 2 to skip the first two nodes in Layer 1 and

connect to Nodes 3-4 instead. In turn, Node 3 connects only to

Nodes 5-6.

Earlier, we described how each node in a hidden layer is

equipped with a unique set of weights, which are incrementally

adjusted until the aggregate weight values across all of the layers

produce a correct classification decision. With CNNs, we can

“tie” these weight values for each set of connected nodes.

Weight tying causes all of these nodes to apply the same weight

values when performing their computations. This drastically

CV Layer 2

Node
1

Node
2

Node
3

CV Layer 1

Each node in Layer 1 connected to three
contiguous nodes in Layer 2

Node
2

Node
1

Node
3

Node
4

Node
5

FIGURE 4.6:� Size=3, Stride=1

130  Introduction to Artificial Intelligence for Security Professionals

reduces the number of parameters a CNN model must com-

pute. The CNN shown in Figure 4.8, for example, employs only

two weights (W
1
 and W

2
). With a fully connected architecture

equipped with the same number of nodes, the network would

have to compute 18 weights (6 weights in Layer 1 * 3 weights

in Layer 2). A set of tied weights like W1
 and W

2
is referred to

as a filter. As we shall see shortly, filters are extremely useful.

Let’s consider now how information flows from one CNN layer

to the next and the role each layer plays in producing a classifi-

cation decision. We’ll explore the process from the standpoint of

image classification, in which the input data consists of a two-di-

mensional matrix of pixel values, with 0 indicating a white pixel

and 1 indicating a black one. However, the process applies in

much the same way to natural language processing and other

one-dimensional data problems in which the input consists of

Node
2

Node
1

Node
3

Node
4

Node
5

Node
5

Node
6

CV Layer 2

Node
1

Node
2

Node
3

CV Layer 1

Each node in Layer 1 connects only to
two contiguous nodes in Layer 2

FIGURE 4.7:� Size=2, Stride=2

Deep Learning  131

a sequence of binary characters like the ones in our XOR key-

length detection problem.

THE CONVOLUTION LAYER
Earlier we described how filters and their size and stride settings

determine which nodes in adjacent convolution layers are allowed

to form connections and which are not. Filters also play a central

role in identifying features and aggregating them into increasingly

abstract representations that ultimately lead to a classification

decision.

In Figure 4.9, we see a matrix of feature values that corre-

spond to a 5-pixel by 5-pixel black and white image. Next to the

Node
2

Node
1

W2
W1W2

W1 W2
W1

Node
3

Node
4

Node
5

Node
5

Node
6

CV Layer 2

Node
1

Node
2

Node
3

CV Layer 1
FIGURE 4.8:� Weights Tied Across Connected Nodes

132  Introduction to Artificial Intelligence for Security Professionals

image is a filter with a 3 x 3 receptive field and a set of initial

weights. We begin by “sliding” the filter over the first set of pixels

and then multiply the pixel values by the corresponding filter

weights.

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 0 1
0 1 0
1 0 1

A 5x5 image and its pixel values A filter with a
receptive field of 3

FIGURE 4.9:� Image and Filter with Weights to Be Applied

0 0
1 0
1 1

0 0 1 1 0
0 1 1 0 0

4

Feature Map

1x1 1x0 1x1

0x0 1x1 1x0

0x1 0x0 1x1

FIGURE 4.10:� Convolving the First Nine Pixels

Deep Learning  133

Next, we sum the products of this element-wise multiplica-

tion and insert the result in the first cell of the associated feature

map. Once the feature map is complete, the resulting activa-

tion values will be output to connected nodes in the next hidden

layer for the next stage of processing. The activation value from

the first convolution is shown in Figure 4.10.

Our CNN has been configured with a stride of 1. Therefore,

we’ll perform our next convolution by sliding the filter one pixel

to the right as shown in Figure 4.11. Once again, we record the

activation in our feature map.

We continue in this way, striding across and down the

image until, as shown in Figure 4.12, our feature map is com-

plete. Notice how the feature map represents our image more

abstractly and with fewer parameters for subsequent layers to

process.

It’s customary to employ hundreds or even thousands of dif-

ferent filters in each convolution layer, with each filter detecting

different features and feature combinations. For example, one

1 0
00
10

0 0 1 1 0
0 1 1 0 0

4 3

Feature Map

1x1 1x0 0x1

1x0 1x1 1x0

0x1 1x0 1x1

FIGURE 4.11:� Sliding Our Filter One Pixel to the Right

134  Introduction to Artificial Intelligence for Security Professionals

set of filters might detect edges while others might detect curved

lines of various orientations.

Once all activations have been computed, the results are

output to connected nodes in the next layer for processing.

THE BATCH NORMALIZATION LAYER
As far back as the late 1990s, analysts have known that neural

networks are easier to optimize when the inputs to the model

are normalized: each input to the model has an average value

of zero and a standard deviation of one. Many strategies to set

random initial weights are built on the assumption that the pre-

vious layer’s activations have also been normalized in this way.

In practice, however, this is rarely the case.

To help accelerate the rate of optimization, we can place a

batch normalization layer after each convolutional layer. Batch

normalization causes the hidden activations to take on values

that are close to being normalized without actually enforcing an

average value of zero and a standard deviation of one. In practice,

1 1 1 00
00 1 1 1

0 0
0 0
0 1

4 3 4
2 4 3
2 3 4

Feature Map

1x1 1x0 1x1

1x0 1x1 1x0

1x1 1x0 1x1

FIGURE 4.12:� Fully Convolved Feature Map

Deep Learning  135

this can substantially reduce the training time by a factor of ten

or more.

THE RECTIFIED LINEAR UNIT (RELU) LAYER
For simplicity, our filter weights and resulting feature maps

employed positive numbers. However, we know from our dis-

cussion of logistic regression that weights can often take on

negative values. With CNNs, the extra processing required to

compute these negative parameters may not produce a mean-

ingful improvement in the model’s accuracy or performance. To

address this, we can incorporate an RELU layer after each con-

volution layer, which converts these negative values to zeros as

shown in Figure 4.13.

0.77 -0.11 0.11 0.33 0.55 -0.11 0.33

-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11

0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55

0.33 0.33 -0.33 0.55 -0.33 0.33 0.33

0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11

-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11

0.33 -0.11 0.55 0.33 0.11 -0.11 0.77

0.77 0 0.11 0.33 0.55 0 0.33

0 1.00 0 0.33 0 0.11 0

0.11 0 1.00 0 0.11 0 0.55

0.33 0.33 0 0 0.33 0.33

0.55 0 0.11 0 1.00 0 0.11

0 0.11 0 0.33 0 1.00 0

0.33 0 0.55 0.33 0.11 0 0.77

0.55

FIGURE 4.13:� RELU Layer Converts Negative Values to Zeros

POOLING LAYERS
The more filters we employ, the more activations we will have to

process in subsequent layers. Pooling layers enable us to reduce

this processing, along with the possibility of over-fitting, by allow-

ing only certain activations to enter and then pass through the

pooling layer to subsequent layers. This process is also referred

to as subsampling the input. One of the most popular ways to

136  Introduction to Artificial Intelligence for Security Professionals

implement pooling is with the max pooling activation function,

which proceeds as follows.

First, a filter is placed over the incoming feature map and

the activations within its receptive field are assessed. Typically,

a filter configured with a 2x2 receptive field and a stride of 2 is

used. If max pooling is configured for 1-max operation, only

the largest magnitude activation within that receptive field will

be copied to a new, smaller feature map. The filter then slides

to its next location (two cells to the right in this case), and the

process repeats until the new feature map is complete. This pro-

cess is illustrated in Figure 4.14. By pooling in this way, we have

reduced the number of weights to be calculated from 16 to 4.

A final global max pooling layer is often incorporated to

subsample all of the incoming activations before passing them

on to the nodes in the output layer. For example, if we were to

apply a global max pooling operation to the original feature map

shown in Figure 4.14, the output would be a single value, 8.

6 8
3 4

Feature Map
After 1-Max

Pooling
Original Feature Map

1 1 42
85 6 7

3
1

2
2

1
3

0
4

FIGURE 4.14:� Max Pooling Applied to Incoming Feature Map

Deep Learning  137

OUTPUT LAYER
The output layer is fully-connected to all of the nodes in the

previous layer. Each output node receives as input an aggregate

activation value that determines which classification should be

assigned. A softmax activation function can also be applied to

assign a probability score to this class assignment.

A Typical Deep Learning Classification Session

Let’s consider now how an analyst might typically traverse

through each stage of a deep learning classification session. Some

of these steps will be familiar to readers of previous chapters.

SAMPLE ACQUISITION AND VECTORIZATION
Step 1: Sample Selection
Once again, we begin by sourcing a representative set of sample

data. Since this is a supervised learning session, the dataset will

include labels that define each sample’s class membership.

Step 2: Subdividing Samples into Subsets
Next, we set aside between 70-90% of our total dataset for use

in training our model. Depending upon the application, we may

subdivide the remaining samples further into separate sets for

validation and testing. Neither of these sets will be exposed to

the model until the training cycle is complete.

The validation and training sets serve slightly different

purposes. The validation set is generally used to compare the

accuracy and performance of several different models in order

to determine which of them should be put into production or

subjected to testing. The validation step is also useful in helping

us detect whether over-fitting is occurring. This becomes evi-

dent if the model’s accuracy with the training data far outstrips

the accuracy it obtains when exposed to the validation set.

138  Introduction to Artificial Intelligence for Security Professionals

However, the model selection process can still be subject to

bias if the training and validation sets don’t accurately reflect

the ground truth of the underlying data environment. To address

this, we can expose our chosen model to a testing dataset and

apply various methods to evaluate its accuracy. If we encoun-

ter anomalies in performance and accuracy between the results

of the validation and testing phases, we may conclude that the

model is underperforming and must be retrained.

As an aside, it’s worth noting that our choice concerning which

data to include in the testing set does not have to be an arbitrary

one. For example, we may wish to test the model by exposing it

to a testing set that contains much more difficult-to-classify sam-

ples than those in the training and validation sets.

Step 3: Feature Extraction and Vectorization
Feature extraction and feature engineering are among the most

complex, difficult, and time-consuming aspects of the machine

learning process. If features are poorly defined or if key attri-

butes are excluded, the resulting models will not accurately

reflect the ground truth and will fail when exposed to real-world

data. Fortunately, neural networks have the ability to automate

the feature extraction process and accept training data in some-

thing close to its raw representation. For example, if our goal is

to learn sequences of binary data, we may not need to extract

features about these sequences. Instead, we may be able to send

the raw binary data directly into the neural network and allow

the network to determine which sequences are meaningful.

Regardless, we must first restructure our samples into separate

matrices of vectors and labels in order to load our training sam-

ples into the neural network’s input layer.

Deep Learning  139

MODEL SELECTION AND INSTANTIATION
With our samples loaded we’re ready to begin selecting and

instantiating a model. We will determine the type of model we

choose and its architecture by the kind of data we’re analyzing

and the nature of the problem scenario. For example, if we’re

working with image data, a convolutional architecture would

be an appropriate choice. If we’re working with sequential data

such as text, bytes, network capture data, etc., then a recurrent

neural network would be suitable. If we’ve already extracted fea-

tures and simply want to compare the performance of several

different kinds of models, we might employ a fully-connected

network. For now, let’s assume we’ve chosen an appropriate

architecture and that we’re ready to begin model training.

MODEL TRAINING
In this phase, we run training data through the model to incre-

mentally optimize the weights in each hidden layer until the

model achieves an acceptable level of accuracy and performance.

Training can begin as soon as the model architecture has

been defined and the path to the directory containing the data-

set has been specified. Assuming we’re content to begin with the

default set of hyperparameters, we can simply execute a func-

tion such as this one:

model.fit(train_x,train_y, nb_epochs=10)

Here, train_x represents the matrix of training data, train_y

represents the vector of training labels, and nb_epochs deter-

mines how many epochs must complete before we stop and

assess how the model’s accuracy and performance have changed.

The term epoch refers to a calculation cycle in which the model

is exposed to the entire training set.

140  Introduction to Artificial Intelligence for Security Professionals

It can take quite some time for the model to process the

entire training set. It’s often more efficient to train with smaller

subsets or batches instead. Since each batch takes less time to

process, we can find out sooner how our model is developing by

exposing each batch result to a segment of the validation set. If

we conclude the model is not performing as expected, we can

modify its hyperparameters and restart the training process.

We’ll take the batch approach later in this chapter when we

show how to classify the length of an XOR key during LSTM and

CNN deep learning sessions.

Neural networks have a seemingly endless number of hyper-

parameters that influence how the models are constructed. The

most common ones include:

•	 Number of hidden layers. We can increase this number

if the error rates are excessive or decrease the number if

we suspect over-fitting.

•	 Number of nodes per hidden layer. Ordinarily, we retain

the default setting, which specifies an equal number of

nodes for each hidden layer. However, we can exper-

iment with assigning different quantities of nodes if it

appears this might be helpful.

•	 Learning rate. This determines the size of each

incremental adjustment made to the weights during opti-

mization—that is, how rapidly the model moves toward

convergence in the weight space. If we choose a learn-

ing rate that is too high, the weight values will bounce

around the weight space and convergence may never

occur. If we set the learning rate too low, the optimizer

will modify the weights in such tiny steps that the “time

to convergence” is extended unnecessarily. We may need

to experiment with the learning rate to find a value that

Deep Learning  141

is “just right” if we hope to train our model within a rea-

sonable timeframe.

•	 Dropout regularization. Due to their complexity and

capacity, neural nets can over-fit the training data by set-

ting each weight in every hidden layer to a value specific

to every input sample. This is equivalent to a decision

tree that creates a node for every sample in the training

set. To prevent this, we can apply the dropout regulariza-

tion hyperparameter, which causes the model to ignore

the output of a proportion of the nodes within each hid-

den layer during each epoch. We can see the effect of

dropout regularization being applied in Figure 4.15.

		 This hyperparameter is expressed as a probabil-

ity value that indicates the likelihood that each hidden

node will be disabled during the processing of a sample.

For example, a dropout setting of 0.2 indicates that 20%

of the hidden nodes will be randomly disabled. A low

dropout setting like this will result in a very expressive

model that captures every nuance of the training set but

(a) Standard
Neural Net

(b) After Applying
Dropout

FIGURE 4.15:� Before and After Dropout Regularization Applied

142  Introduction to Artificial Intelligence for Security Professionals

may be prone to over-fitting. A high setting, such as 0.8,

may cause so many dropouts that the model’s accuracy

is compromised. In practice, we usually begin with a

default value of 0.5 and then experiment with varying

the settings higher and lower to assess the results.

It’s customary to apply a range of random settings to these

and other hyperparameters during training in order to generate

several dozen different models for assessment during the subse-

quent validation and testing phases.

MODEL VALIDATION
As noted earlier, we can alternate the training and validation

processes from batch-to-batch or wait to validate a set of models

when training is complete. A wide variety of validation meth-

ods and functions can be employed, including the precision

and recall metrics we described in the classification chapter.

Regardless, our goal is to ensure that we haven’t inadvertently

cherry-picked a model that over-fits the training data. To pre-

vent this, we expose our trained models to the validation dataset

and then choose the one that offers the best combination of per-

formance and accuracy for testing.

MODEL TESTING AND DEPLOYMENT
Once we choose our “best” model, we’re ready to subject it to

test data and measure the results. As mentioned earlier, it’s

not uncommon to populate test data with particularly difficult

examples to assess how well the model is likely to perform in the

real world. If our goal is to determine the key length of an XOR-

obfuscated sequence of bytes, for example, our testing set might

include samples that are particularly difficult to de-obfuscate.

Alternately, we might expose a model trained on XOR’d English-

language ASCII characters to XOR’d base64 encoded test data to

Deep Learning  143

assess how well it generalizes in classifying other kinds of byte

sequences.

Hands-on Learning Exercises

Let’s apply what we’ve learned to see how LSTMs and CNNs can

solve a classification problem by analyzing sequences of binary

data. In this case, our goal is to determine the bit-length of the

XOR key used to obfuscate a sample of text.

While the scikit-learn toolkit provides some simple neural

net implementations, we’ll be using the more robust versions

provided by the Theano python library. You can download the

scripts and data we’ll be using here:

https://www.cylance.com/intro-to-ai

As noted earlier, numerous hyperparameter settings can

be applied to influence how neural network models are trained

and optimized. For simplicity, our scripts have been hard-coded

with settings we know to be useful ones. However, we strongly

encourage you to modify these scripts or create new ones your-

self. This will enable you to fully appreciate how different neural

network hyperparameter settings and architectures influence

the classification process and the resulting accuracy and perfor-

mance of the resulting neural network models.

ENCRYPTING WITH XOR
XOR, or “exclusive or,” is a logical operation for encrypting and

decrypting binary data using variable length keys. The name

reflects the method used to modify the byte values. Each bit

in the key is compared to a corresponding bit in the sample

set. Next, XOR returns a value of 1 (true) if the bit values are

different and 0 (false) if they agree. The process can easily

be reversed by applying the same key to return the modified

144  Introduction to Artificial Intelligence for Security Professionals

bits to their original values. While XOR is not one of the most

secure encryption methods available, it’s often used as part of

an encryption scheme due to its simplicity to implement and its

ability to modify data quickly. For example, the same XOR key

can be applied repeatedly across an entire dataset. If our key is

password and our data is Encrypt this data, XOR will apply the

8-bit key to each byte in our data as shown in the table below.

(Since we’re using binary ASCII data, only seven of the eight bits

will be encrypted. The eighth bit will be ignored.)

XOR Applied to Encrypt Binary ASCII Characters
Key Plaintext Encrypted

p E 0x35
a n 0x0f
s c 0x10
s r 0x01
w y 0x0e
o p 0x1f
r t 0x06
d 0x44
p t 0x04
a h 0x09
s i 0x1a
s s 0x00
w 0x57
o d 0x0b
r a 0x13
d t 0x10
p a 0x11

The process would be the same if we were using a key length

of two bytes (16 bits) with a dataset consisting of 160 characters

of 8 bits each. In that case, the key would be applied sequentially

Deep Learning  145

ten times. For example, the first bit of the key would be applied

to the first bit of the first byte, the first bit of the third byte, etc.

If we know the length of the XOR key, we can attempt to

guess the original characters using a technique called frequency

analysis. Normally, this approach would only work well with sin-

gle-byte keys. However, if we know the length of the key, we can

apply the same technique to streams of cipher text. A detailed

description of frequency analysis and its role in encryption and

decryption is beyond the scope of this chapter. Here, we’ll focus

exclusively on demonstrating how the length of the XOR key

can be determined using the LSTM and CNN algorithms.

GENERATING A DATASET
As usual, we must acquire a representative dataset to work with.

In this case, our dataset will consist of a sequence of bytes rep-

resenting English ASCII characters. Consequently, each vector

will include eight dimensions, one for each of the eight possible

bit values (although the eighth bit will be ignored as noted ear-

lier). Given their binary format, each feature can hold only one

of two values: 0 and 1.

To generate our dataset, we’ll begin by downloading a ran-

dom section of plaintext from the enwik8 dataset. This data,

along with documentation, can be accessed at the following link:

https://cs.fit.edu/~mmahoney/compression/textdata.html

We’ll reserve roughly 70% of this plaintext data for our train-

ing set. The remaining data will be used for validation during

training. We’ll also create some additional validation data to use

when we’re ready to test our models. To create this data, we’ll

use the Python script generate_xor.py. This script will read

the enwik8 plaintext and then encrypt it with a random XOR

key of a specified length. We’ll specify a length of eight bits.

146  Introduction to Artificial Intelligence for Security Professionals

Later, we’ll test our models with this encrypted data to see how

well they are able to correctly predict our 8-bit key length.

As shown, the script returns a random 8-bit key along with

the encrypted version of our remaining plaintext data. Both the

key and the data have been written to the specified file path.

We’re ready now to begin feeding batches of the plaintext

training set to our two neural networks. Let’s start with LSTM.

APPLYING AN LSTM MODEL TO IDENTIFY THE XOR KEY
LENGTH
Recurrent neural networks like LSTM are well-suited to solving

problems in which the sequential relationships between sam-

ples determines their class assignments. We’ll instantiate our

model and begin the training process with the python script

train_model.py. By default, this function creates an LSTM

model (notice that the conv operator is set to false), along with

a default configuration of hyperparameter settings. These are

displayed in the screen shot below.

�

As shown in Figure 4.16, our model will include one LSTM

input layer (containing 256 nodes) and a hidden LSTM layer with

Deep Learning  147

the same number of nodes. The output of this hidden layer will

be passed to a Global Max Pooling layer followed by an Output

layer. There, a softmax activation function will be applied to

classify each sample and predict the bit length of our XOR key.

We’re ready now to start the training process.

LSTM Model Training and Optimization
We’ll train our LSTM model in batches. After each one, we’ll

assess our model’s accuracy by exposing it to our encrypted

validation set. If the accuracy scores fail to improve over ten

batches of training and validation, we’ll interpret this to mean

LS
TM

 L
ay

er
LS

TM
 In

pu
t

La
ye

r

G
lo

ba
l M

ax
 P

oo
lin

g

O
ut

pu
t L

ay
er

FIGURE 4.16:� Our LSTM Architecture

148  Introduction to Artificial Intelligence for Security Professionals

that our learning rate is set too high and reduce it accordingly.

This will enable us to continue fine-tuning our model indefi-

nitely or abort training and construct a new model with different

configuration and hyperparameter settings. We can see this

training and validation process proceeding in the screen shot

on the next page.

Deep Learning  149

Training a neural network can be quite a lengthy process. At

this point, our model has achieved a validation score of roughly

.83. While this is a big improvement over the initial score of

approximately .12, it’s still not accurate enough for our needs.

Consequently, we’ll run additional batches until we achieve an

accuracy score of at least .90.

LSTM Model Testing
After many more batches, our LSTM model has achieved a val-

idation score exceeding .97. We’re ready now to see how well

it’s able to predict the length of our XOR key. After saving the

model to disk, we’ll expose it to our XOR’d test set using the

classify_with_model.py script with arguments that include the

path to the test data and the name of the model (lstm-lr-0.001-

od-256-oa-softmax-a-relu.model).

150  Introduction to Artificial Intelligence for Security Professionals

As we can see, the LSTM model has correctly predicted a key

length of eight bits.

APPLYING A CNN MODEL TO IDENTIFY THE XOR KEY LENGTH
Although they lack the gates that provide RNNs with their pro-

digious memory, CNNs can also solve complex classification

problems in which the ordering of samples in time or their adja-

cency in space ultimately determines the classification decision.

Consequently, CNNs are widely used with problems ranging from

image categorization (by analyzing neighborhoods of adjacent

pixels) to natural language processing (by analyzing neighbor-

hoods of words). Let’s consider, at a conceptual level first, how

these capabilities can be applied to XOR key detection.

In our initial convolutional layer, each input node will receive

a series of samples consisting of 8-bit encoded bytes of ASCII

characters. There, filters will be applied to calculate weights for

neighborhoods of characters, with the size of the neighborhood

defined by the CNN’s size hyperparameter. Next, we’ll pass the

output to the connected nodes in a second convolutional layer

and apply additional filtering and activation functions to inter-

pret the samples at a more abstract level. After several more

stages of processing, a global max pooling layer will select the

maximum node values for the filters in the final convolutional

layer over the entire input sequence. Finally, the samples will be

passed via a fully connected layer to the output layer, where the

key length classification will be assigned.

The CNN we’ll be using in our example will be a bit more

complex, incorporating four convolution layers, each one

equipped with 256 nodes. Each of these convolution layers will

be followed by layers for batch normalization, RELU activation,

and max pooling. The resulting output will be fed into a global

max pooling layer and then finally to the output layer, where a

Deep Learning  151

softmax activation function will be applied to produce the clas-

sification prediction. The architecture of our CNN is shown in

Figure 4.17: Our CNN Architecture.

CNN MODEL TRAINING AND OPTIMIZATION
As before, we’ll instantiate our model and train it in batches

using the python script train_model.py. This time, however,

we’ve changed the conv operator to true in order to produce a

CNN rather than the default LSTM. We can see the configuration

details of our model in the screen shot below.

In
pu

t
La

ye
r

Co
nv

ol
ut

io
n

B
at

ch
 N

or
m

al
iz

at
io

n

R
EL

U
 A

ct
iv

at
io

n

M
ax

 P
oo

lin
g

Co
nv

ol
ut

io
n

B
at

ch
 N

or
m

al
iz

at
io

n

R
EL

U
 A

ct
iv

at
io

n

M
ax

 P
oo

lin
g

Co
nv

ol
ut

io
n

B
at

ch
 N

or
m

al
iz

at
io

n

R
EL

U
 A

ct
iv

at
io

n

M
ax

 P
oo

lin
g

Co
nv

ol
ut

io
n

B
at

ch
 N

or
m

al
iz

at
io

n

R
EL

U
 A

ct
iv

at
io

n

M
ax

 P
oo

lin
g

G
lo

ba
l M

ax
 P

oo
lin

g

O
ut

pu
t

La
ye

r

FIGURE 4.17:� Our CNN Architecture

152  Introduction to Artificial Intelligence for Security Professionals

This time, training proceeds much more quickly.

Before very long, our model’s validation score has increased

from its initial value of about .63 to more than .99.

At this point, we’re ready to test our model.

CNN Model Testing
Once again, we’ll save our model to disk and expose it to our test

set using the classify_with_model.py script with the same argu-

ments as before. The only difference is the name of our model:

cnn-lr-0.001-od-256-oa-softmax-a-relu.model.

Deep Learning  153

As we can see, the CNN model has also correctly predicted

the XOR key length to be eight bits.

Deep Learning Takeaways

In this chapter, we considered how neural networks can be

applied to solve a variety of deep learning problems and exam-

ined three different neural network architectures. Here are some

of the key points we covered:

•	 Neural networks are extremely flexible, general-purpose

algorithms that can solve a myriad of problems in a myr-

iad of ways. Unlike other algorithms, for example, neural

networks can have millions or even billions of parame-

ters applied to define a model.

•	 Neural networks employ layers of processing, with each

layer and its set of nodes performing a particular kind of

computation. At least one of these layers will be hidden.

It is this multi-layered approach employing hidden layers

that distinguishes deep learning from all other machine

learning methods.

154  Introduction to Artificial Intelligence for Security Professionals

•	 All of the nodes in each hidden layer are randomly

assigned a set of weight values, one for each feature in

the sample set. During processing, each node multiplies

the feature value by its corresponding weight, sums the

products, and then passes the result through an activa-

tion function that performs the calculation specified for

that layer. The result is an activation value that reflects

the aggregate effect of that node’s processing.

•	 After each training cycle, a loss function compares the

classification decision assigned at the output layer to

the class labels in the training set to determine how the

weights in all of the hidden layers should be modified to

produce a more accurate result. This process repeats as

many times as required before a set of candidate models

can proceed to the validation and testing phases.

•	 In a fully connected network like LSTM, the output of

every node is connected to the inputs of every node in

the layer that follows. In contrast, CNNs employ a par-

tially connected architecture, in which nodes in one

hidden layer connect only to a set of contiguous nodes

in the previous hidden layer. These connections are con-

trolled by the filter settings size and stride.

•	 In a feedforward network, information flows from the input

layer through to the output layer without backtracking.

In contrast, LSTM and other recurrent neural networks

employ feedback loops and gates, which determine how

and when the contents of a node should be updated and/

or passed on to nodes in subsequent hidden layers.

•	 Feedforward networks are well-suited to problems in

which there is no need to remember the order in which

a sequence of samples arives at the input layer. When

the context of successive samples must be considered,

Deep Learning  155

a Recurrent Neural Network (RNN) such as LSTM is a

better choice. Instead of activation functions, LSTMs

employ gates that enable them to retain and reuse

state information spread across very long sequences of

time-series data.

•	 CNNs are particularly well-suited to solving problems,

such as image recognition, where the features in a sam-

ple are related spatially. However, CNNs can also work

well with problems such as XOR key-length classifica-

tion, in which the relationships among a sequence of

binary characters can be determined based on a series of

local connections among contiguous nodes.

•	 A sample’s feature values are only visible to the nodes

in the input and first hidden layers. All subsequent lay-

ers can only “see” the combined output values from the

nodes in the previous layer and thus “observe” features in

aggregate at increasing levels of abstraction. For example,

one layer might perform edge processing, another might

consolidate edges into shapes, and a third might asso-

ciate that shape with a category, such as “face.” Neural

networks make it possible to perform this kind of pro-

cessing in an extremely granular way, progressing from

low level signals to complex decisions through an ordered

sequence of multilayered hierarchical calculations.

