
Indexing and Searching

Introduction

How to retrieval information?

A simple alternative is to search the whole
text sequentially

Another option is to build data structures
over the text (called indices) to speed up
the search

Introduction

 Indexing techniques:
Inverted files
Suffix arrays
Signature files

Notation

n: the size of the text
m: the length of the pattern
v: the size of the vocabulary
M: the amount of main memory available

Inverted Files

an inverted file is a word-oriented
mechanism for indexing a text collection

an inverted file is composed of vocabulary
and the occurrences

occurrences - set of lists of the text
positions where the word appears

Searching

The search algorithm on an inverted
index follows three steps:
Vocabulary search: the words present in

the query are searched in the vocabulary
Retrieval occurrences: the lists of the

occurrences of all words found are retrieved
Manipulation of occurrences: the

occurrences are processed to solve the
query

Searching

 Searching task on an inverted file always starts in
the vocabulary (It is better to store the vocabulary in
a separate file)

 The structures most used to store the vocabulary
are hashing, tries or B-trees

 An alternative is simply storing the words in
lexicographical order (cheaper in space and very
competitive with O(log v) cost)

Construction

building and maintaining an inverted index
is a low cost task

an inverted index on a text of n characters
can be built in O(n) time

all the vocabulary is kept in a trie data
structure

 for each word, a list of its occurrences
(test positions) is stored

Construction

each word of is read and searched in the
vocabulary

Other Indices for Text

Suffix trees and suffix arrays
Signature files

Suffix Trees and Suffix Arrays

Inverted indices assumes that the text can
be seen as a sequence of words
Restricts the kinds of queries that can be

answered
Other queries, ex. phrases, are expensive to

solve
Problem: the concept of word does not exist

in some applications, e.g. genetic
database

Suffix Trees

A suffix tree is
a trie data structure
built over all the suffixes of the text
(pointers to the suffixes are stored at the leaf nodes)
compacted into a Patricia tree, to improve

space utilization
The tree has O(n) nodes instead of O(n2) nodes of the

trie

Suffix Arrays

a space efficient implementation of suffix
trees

allow user to answer more complex
queries efficiently

main drawbacks
costly construction process
text must be available at query time
results are not delivered in text position order

Suffix Arrays

Can be used to index only words as the
inverted index (unless complex queries are
important, inverted files performs better)

a text suffix is a position in the text (each
suffix is uniquely identified by its position)

 index points, which point to the beginning of the text
positions, are selected from the text

elements which are not indexed are not
retrievable

Suffix Arrays: Structure

Suffix tree problem: space requirement
Each node of the trie takes 12 to 24 bytes
-> space overhead of 120% to 240% over the text

size is produced
Suffix array is an array containing all the

pointers to the text suffixes listed in
lexicographical order
requires much less space

Suffix Arrays: Structure

are designed to allow binary searches (by
comparing the contents of each pointer)

 for large suffix arrays, binary search can
perform poorly (due to the number of random
disk accesses)

one solution is to use supra-indices over
suffix array

Suffix Arrays: Searching

basic pattern (ex. words, prefixes, and
phrases) search on a suffix tree can be
done in O(m) time by a simple trie search

binary search on suffix arrays can be done
in O(log n) time

Suffix Arrays: Construction

a suffix tree for a text of n characters can
be built in O(n) time

 if the suffix tree does not fit in main
memory, the algorithm performs poorly

Suffix Arrays: Construction

an algorithm to build the suffix array in O(n
log n) character comparisons
suffixes are bucket-sorted in O(n) time

according to the first letter only
each bucket is bucket-sorted again according to

the first two letters

Suffix Arrays: Construction

at iteration i the suffixes begin already sorted by
their 2i-1 first letters and end up sorted by their
first 2i letters

each iteration, the total cost of all the bucket
sorts is O(n), the total time is O(n log n), and
the average is O(n log log n) (O(log n)
comparisons are necessary on average to
distinguish two suffixes of a text)

Suffix Arrays: Construction

 large text will not fit in main memory
 split large text into blocks that can be sorted in

main memory
 build suffix array in main memory and merge it

the the rest of the array already built for the
previous text

 compute counters to store information of how
many suffixes of the large text lie between each
pair of positions of the suffix array

Signature Files

Signature files are word-oriented index
structures based on hashing
low overhead (10%-20% over the text size)
forcing a sequential search over the index
suitable for not very large texts
Nevertheless, inverted files outperform signature

files for most applications

Signature Files: Structure

A signature file uses a hash function (or
‘signature’) that maps words to bit masks
of B bits

 the text is devided in blocks of b words
each

 to each text block of size b, a bit mask of
size B is assigned

 this mask is obtained by bitwise ORing the
signatures of all the words in the text block

Signature Files: Structure

 a signature file is the sequence of bit masks of
all blocks (plus a pointer to each block)

 the main idea is:
 if a word is present in a text block, then all the bits set in

its signature are also set in the bit mask of the text block
 false drop: all the corresponding bits are set even

though the word is not in the block

 to ensure low probability of a false drop and to
keep the signature file as short as possible

Signature Files: Searching

Searching a single word is done by
1. hashing that word to a bit mask W
2. comparing the bit masks Bi of all the text

blocks
3. whenever (W & Bi = W), the text block may

contain the word
4. online traversal must be performed on all the

candidate text blocks to verify if the word is
there

Signature Files: Searching

This scheme is efficient to search phrases
and reasonable proximity queries

Signature Files: Construction

Constructing a signature file:
1. cut text into blocks
2. generate an entry of the signature file for each

block
 this entry is the bitwise OR of the signatures of all the

words in the block

Adding text: adding records to the signature file
Deleting text: deleting the appropriate bit masks

Signature Files: Construction

Storage proposals:
1. store all the bit masks in sequence
2. make a different file for each bit of the

mask
(ex. one file holding all the first bits, another file for all
the second bits)

 result: the reduction in the disk times to search
for a query
(only the files corresponding to the l bits, which are set
in the query, have to be traversed)

Boolean Queries

 the set manipulation algorithms are used
when operating on sets of results

 the search proceeds in three phases:
1. determines which documents classify
2. determines the relevance of the classifying

documents (to present them to the user)

3. retrieves the exact positions of the matches in
those documents (that the user wants to see)

Sequential Searching

when no data structure has been built on the text
1. brute-force (bf) algorithm
2. Knuth-Morris-Pratt
3. Boyer-Moore Family
4. Shift-Or
5. Suffix Automaton
6. Practical Comparison
7. Phrases and Proximity

Brute Force (BF)

Trying all possible pattern positions in the text
 a window of length m is slid over the text
 if the text in the window is equal to the pattern,

report as a match
 shift the window forward

 worst-case is O(mn)
 average case is O(n)
 does not need any pattern preprocessing

Knuth-Morris-Pratt (KMP)

 linear worst-case behavior O(2n)
average case is not much faster than BF

slide a window over the text
does not try all window positions
reuses information from previous checks

 the pattern is preprocessed in O(m) time

Boyer-Moore Family

 the check inside the window can proceed
backwards

 for every pattern position j the next-to-last
occurrence of Pj..m inside P called match
heuristic

occurrence heuristic: the text character
that produced the mismatch has to be
aligned with the same character in the
pattern after the shift

Boyer-Moore Family

proprocessing time and space of this
algorithm: O(m+σ)

search time is O(n log (m)/m) on average
worst case is O(mn)

Shift-Or

 uses bit-parallelism to simulate the operation of
a non-deterministic automaton that searches the
pattern in the text

 builds a table B which stores a bit mask bm...b1
for each character

 update D using the formula
D’ ← (D<<1) | B[Tj]

 O(n) on average, preprocessing is O(m+σ)
 O(σ) space

Suffix Automaton

The Backward DAWG matching (BDM) is
based on a suffix automaton

a suffix automaton on a pattern P is an
automaton that recognizes all the suffixes
of P

 the BDM algorithm converts a non-
deterministic suffix automaton to
deterministic

Suffix Automaton

 the size and construction time is O(m)
build a suffix automaton Pr (the reversed

pattern) to search for pattern P
a match is found if the complete window is

read
O(mn) time for worst case
O(n log(m)/m) on average

Practical Comparison

Figure 8.20 compares string matching
algorithms on:
English text from the TREC collection
DNA
random text uniformly generated over 64 letters
patterns were randomly selected from the text,

except for random text, patterns are randomly
generated

Phrases and Proximity

 if the sequence of words is searched as
appear in text, the problem is similar to
search of a single pattern

 to search a phrase element-wise is to
search for the element which is less
frequent or can be searched faster, then
check the neighboring words

same for proximity query search

Pattern Matching

Two main groups of techniques to deal with
complex patterns:
1. searching allowing errors
2. searching for extended patterns

Searching Allowing Errors

Approximate string matching problem: given
a short pattern P of length m, a long text T of
length n, and a maximum allowed number of
errors k, find all the text positions where the
pattern occurs with at most k errors

The main approaches for solution: dynamic
programming, automaton, bit-parallelism and
filtering

Dynamic Programming

 the classical solution to approximate string
matching

 fill a matrix C column by column where C[i,j]
represents the minimum numbers of errors
needed to match P1..i to a suffix of T1..j
C[0,j] = 0
C[i,0] = i
C[i,j] = if (Pi=Tj) then C[i-1,j-1]

 else 1+min(C[i-1,j],C[i,j-1],C[i-1,j-1]

Automaton

reduce the problem to a non-deterministic
finite automaton (NFA)

each row of the NFA denotes the number
of errors seen

every column represents matching the
pattern up to a giver position

Automaton

 horizontal arrows represent matching a
character

 vertical arrows represent insertions into the
pattern

 solid diagonal arrows represent replacements
 dashed diagonal arrows represent deletions in

the pattern
 the automaton accepts a text position as the end

of a match with k errors whenever the (k+1)-th
rightmost state is active

Bit-Parallelism

use bit-parallelism to parallelize the
computation of the dynamic programming
matrix

Filtering

reduce the area of the text where dynamic
programming needs to be used by filter
the text first

Regular Expressions and Extended
Patterns
 build a non-deterministic finite automaton of size

O(m)
m: the length of the regular expression

 convert this automaton to deterministic form
search any regular expression in O(n) time
 its size and construction time can be exponential in m,

i.e. O(m2m)

 bit-parallelism has been proposed to avoid the
construction of the deterministic automaton

Pattern Matching Using Indices

how to extend the indexing techniques for
simple searching for more complex
patterns

 inverted files:
using a sequential search over the vocabulary

and merge their lists of occurrences to retrieve
a list of documents and the matching text
positions

Pattern Matching Using Indices

suffix tree and suffix array:
if all text positions are indexed, words, prefixes,

suffixes and substrings can be searched with
the same search algorithm and cost -> 10 to 20
times text size for index

range queries can be done by searching both
extremes in the trie and collects all leaves in the
middle

Pattern Matching Using Indices

regular expression search and unrestricted
approximate string matching can be done by
sequential searching

other complex searches that can be done are:
find the longest substring in the text that
appears more than once, find the most common
substring of a fixed size

suffix array implementation reduce operation
cost from C(n) (on suffix tree) to O(C(n) log n)
cost

Structural Queries

The algorithms to search on structured text
are dependent on each model

Some considerations are:
how to store the structural information

build and ad hoc index to store the structure
(efficient and independent of the text)

mark the structure in the text using ‘tags’
(efficient in many cases, integration into an
existing text database is simpler)

Compression

Sequential searching
Compressed indices

Inverted files
Suffix trees and suffix arrays
Signature files

Sequential Searching

Huffman coding technique allows directly
searching compressed text

Boyer-Moore filtering can be used to
speed up the search in Huffman coding
trees

Phrase searching can be accomplished
using the i-th bit mask with the i-th element
of the phrase query + Shift-Or algorithm
(simple and efficient)

Compressed Indices:
Inverted Files
 the lists of occurrences are in increasing

order of text position
 the differences between the previous

position and the current one can be
represented using less space by using
techniques that favor small numbers

 the text can also be compressed
independently of the index

Compressed Indices:
Suffix Trees and Suffix Arrays

 reduction of space requirements -> more
expensive searching

 reduced space requirements are similar to
those of uncompressed suffix arrays at much
smaller performance penalties

 suffix arrays are hard to compress because
they represent an almost perfectly random
permutation of the pointers to the text

Compressed Indices:
Suffix Trees and Suffix Arrays

 building suffix arrays on compressed text:
reduce space requirements
 index construction and querying almost double

performance
construction is faster because more compressed text

fits in the same memory space -> fewer text blocks
are needed

 Hu-Tucker coding allows direct binary search
over the compressed text

Compressed Indices:
Signature Files

 compression techniques are based on the fact
that only a few bits are set in the whole file

 possible to use efficient methods to code the
bits which are not set (ex. run-length encoding)

 different considerations arise if the file is stored
as a sequence of bit masks or with one file per
bit of the mask

 advantages are
reduce space and disk times
 increase B (reduce the false drop probability)

Trends and Research Issues

The main trends in indexing and searching
textual database are

 text collections are becoming huge
 searching is becoming more complex
 compression is becoming a star in the

field

