
Experiences in Building an Object-Based Storage System
based on the OSD T-10 Standard

David Du, Dingshan He, Changjin Hong, Jaehoon Jeong, Vishal Kher,
Yongdae Kim, Yingping Lu, Aravindan Raghuveer, Sarah Sharafkandi

DTC Intelligent Storage Consortium
University of Minnesota�

du, he, hong, jjeong, vkher, kyd, lu, aravind, ssharaf � @cs.umn.edu

Abstract

With ever increasing storage demands and management
costs, object based storage is on the verge of becoming the
next standard storage interface. The American National
Standards Institute (ANSI) ratified the object based stor-
age interface standard (also referred to as OSD T-10) in
January 2005. In this paper we present our experiences
building a reference implementation of the T10 standard
based on an initial implementation done at Intel Corpo-
ration. Our implementation consists of a file system, ob-
ject based target and a security manager. To the best of
our knowledge, there is no reference implementation suite
that is as complete as ours. Efforts are underway to open
source our implementation very soon. We also present per-
formance analysis of our implementation and compare it
with an iSCSI based SAN and NFS storage configurations.
In future, we intend to use this implementation as a plat-
form to explore different forms of storage intelligence.

1. Introduction

Recent studies show that the storage demands are grow-
ing rapidly and if this trend continues, storage administra-
tion costs will be higher than the cost of the storage sys-
tems themselves. Therefore intelligent, self managing and
application aware storage systems are required to handle
this unprecedented increase in the storage demands. To be
self managing, the storage device needs to be more aware
of the data it is storing. But the current block interface to
storage systems is very narrow and cannot convey any such
additional semantics to the storage. This forms the funda-
mental motivation behind revamping the storage interface
from a narrow, rigid interface to a more “expressive” and
extensible interface. This new storage interface is termed
as the object based storage interface.

Storage devices that are based on this object based in-
terface (referred to as Object Based storage devices) will
store and manage data containers called objects which can
be viewed as a convergence of two technologies: files and
blocks [17]. Files have associated attributes which con-
vey some information about the data that is stored within.
Blocks, on the other hand, enable fast, scalable and direct
access to shared data. Objects can provide both the above
advantages. The NASD project at CMU [12] provided the
initial thrust for the case of object based storage devices.
Recently, Lustre [4] and Panasas [6] have used object based
storage to build high performance storage systems. But
both these implementations use proprietary interfaces and
hence limit interoperability.

Standardization of the object interface is essential to en-
able early adoption of object based storage devices and
to further increase its market potential. To address this
concern, an object based storage interface standard (OSD
T10) was ratified by ANSI in January 2005 and the first
version released [8]. An implementation of the standard
along with a filesystem, would help quicker adoption of
the OSD standard by providing an opportunity for the in-
terested vendors/researchers to obtain a hands-on experi-
ence of what OSD can provide. Another important ad-
vantage of a open source reference implementation is that
it can serve as a conformance point to test for interoper-
ability1 when multiple OSD products arrive in the market.
As explained earlier, the OSD interface is just a means to
provide more knowledge about the data (through attributes
of the object) to the storage device. Mechanisms that use
this knowledge to improve performance are called Storage
Intelligence. Researchers can build “layers” over a refer-
ence implementation to investigate into various techniques
to provide storage intelligence.

1All member companies of DISC have expressed strong interest in es-
tablishing such an interoperability test lab.

1



Based on the above motivations, we have implemented
a complete object based storage system compliant to the
OSD T-10 standard. In this paper, we present our expe-
riences building this reference implementation. Our work
is based on an initial implementation done by Mike Mes-
nier from Intel Corporation (now at Carnegie Mellon Uni-
versity). Our implementation consists of a file system, an
object based target and a security manager, all compliant
with the T-10 spec. To the best of our knowledge, there
is no open source reference implementation suite that is as
complete as ours. Efforts are currently underway to open
source our implementation soon and we believe that, once
available, such a implementation can hasten the adoption
of the OSD T-10 standard in the storage community.

The aim of this work was to develop a quick yet com-
plete prototype of an OSD based storage system that is
based on industry standards. We then want to use this im-
plementation to explore the new functionalities that OSD
based systems can provide to current and future applica-
tions. More specfically, we want to investigate on how
applications can convey semantics to storage and how the
storage system, in turn, can use these to improve some sys-
tem parameters like performance, scalability etc.

The remainder of the paper is organized as follows. In
Section 2 we first briefly present an overview of the T10
standard. Section 3 discusses the various design and imple-
mentation issues that we handled during implementing the
standard. In Section 4 we discuss the performance evalua-
tion methodology used and present results. Some relevant
related work is presented in Section 5 . Section 6 concludes
the paper and discusses avenues for future work.

2. Overview of the T10 SCSI OSD Standard

The OSD specification [8] defines a new device-type
specific command set in the SCSI standards family. The
Object-based Storage device model is defined by this spec-
ification. It specifies the required commands and behavior
that is specific to the OSD device type.

Figure 1 depicts the abstract model of OSD in compar-
ison to traditional block-based device model for a file sys-
tem. The traditional functionality of file systems is repar-
titioned primarily to take advantage of the increased intel-
ligence that is available in storage devices. Object-based
Storage devices are capable of managing their capacity and
presenting file-like storage objects to their hosts. These
storage objects are like files in that they are byte vectors
that can be created and destroyed and can grow and shrink
their size during their lifetimes. Like a file, a single com-
mand can be used to read or write any consecutive stream of
the bytes constituting a storage object. In addition to map-
ping data to storage objects, the OSD storage management
component maintains other information about the storage

����������	


��
���������	�����

����������	


��
���������	�����

�������	�����

������������	���

�������	������� ��������

����
�
��


�����������		�

����
�
���

 
�������		�

����
�
���

 
�������		�

����
������

�����		�

�������	�����

������������	���

�����������

�����������

Figure 1. Comparison of traditional and OSD
storage models

objects in attributes, e.g., size, usage quotas and associated
user name.

2.1. OSD Objects

In the OSD specification, the storage objects that are
used to store regular data are called user objects. In ad-
dition, the specification defines three other kinds of objects
to assist navigating user objects, i.e., root object, partition
objects and collection objects. There is one root object for
each OSD logical unit [7]. It is the starting point for nav-
igation of the structure on an OSD logical unit analogous
to a partition table for a logical unit of block devices. User
objects are collected into partitions that are represented by
partition objects. There may be any number of partitions
within a logical unit up to a specific quota defined in the
root object. Every user object belongs to one and only one
partition. The collection represented by a collection object
is another more flexible way to organize user objects for
navigation. Each collection object belongs to one and only
one partition and may contain zero or more user objects be-
longing to the same partition. Different from user objects,
all three kinds of aforementioned navigating objects do not
contain a read/write data area. All relationships between
objects are represented by object attributes discussed in the
next section.

Various storage objects are uniquely identified within an
OSD logical unit by the combination of two identification
numbers: the Partition ID and the User Object ID as illus-
trated in Table 1. The ranges not specified in the table are
reserved.

2



Partition ID User Object ID Object type

0 0 root object
220 to 264 � 1 0 partition object
220 to 264 � 1 220 to 264 � 1 collection/user object

Table 1. Object identification numbers

2.2. Object Attributes

Object attributes are used to associate meta data with
any OSD object, i.e., root, partition, collection or user. At-
tributes are organized in pages for identification and refer-
ence. Attribute pages associated with an object is uniquely
identified by their attribute page numbers ranging from 0
to 232 � 1. This page number space is divided into several
segments so that page numbers in one segment can only
be associated with certain type of object. For instance, the
first segment from 0x0 to 0x2FFFFFFF can only be as-
sociated with user objects.

Attributes within an attribute page have similar sources
or uses. Each of them has an attribute number between
0x0 and 0xFFFFFFFE that is unique within the attribute
page. The last attribute number, i.e., 0xFFFFFFFF is
used to represent all attributes within the page when re-
trieving attributes.

The OSD specification defines a set of standard attribute
pages and attributes that can be found in [8]. Certain range
of attribute pages and attribute numbers are reserved for
other standards, manufacturer specific or vendor specific
ones. By this way, new attributes can be defined to allow
OSD to perform specific management functions. In [15],
a new attribute page containing QoS related attributes is
defined to enable OSD to enforce QoS.

2.3. Commands

The OSD commands are executed following a request-
response model as defined in SCSI Architecture Model
(SAM-3) [7]. This model can be represented as a proce-
dure call as following:

Service response = Execute Command(IN(I T L x
Nexus, CDB, Task Attribute, [Data-In Buffer Size], [Data-
Out Buffer], [Data-Out Buffer Size], [Command Reference
Number), OUT([Data-In Buffer], [Sense Data], [Sense
Data Length], Status))

The meaning of all inputs and outs are defined in SAM-3
[7]. The OSD specification additional defined the contents
and formats of CDB, Data-Out Buffer, Data-Out Buffer
Size, Data-in Buffer, Data-in Buffer Size and sense Data.

The OSD commands use the variable length CDB for-
mat defined in SPC-3 but has a fixed length of 200 bytes.
Each OSD command has an opcode 0x7F in CDB to dif-
ferentiate it from commands of other command sets. In the
same CDB, a two-byte service action field specifies one

Application
Client

Policy/Storage
Manager

Security
Manager

OBSD

Request Credential

Return Credential
including Capability
and Capability Key

Request Capability

Return Capability

CDB including
Capability and

Request Integrity
Check Value

Shared Secret through
SET KEY and

SET MASTER KEY

Check the validity
of CDB with the

Shared Key

Figure 2. OSD Security Model

of the twenty-three OSD service requests defined in the
OSD specification. Some of the CDB fields are specific to
service actions and others are common for all commands.
Every CDB has a Partition ID and a User Object ID, the
combination of which uniquely identifies the requested ob-
ject in a logical unit. Any OSD command may retrieve
attributes and any OSD command may store attributes.
Twenty-eight bytes in CDB are used to define the attributes
to be set and retrieved. Two other common fields in CDB
are capability and security parameters that will be ex-
plained later.

Both Data-In Buffer and Data-Out Buffer contains mul-
tiple segments, including command data segments, param-
eter data segments, set/get attribute segments and integrity
check value segments. Each segment is identified by the
offset of its first byte from the first byte of the buffer. Such
offsets are referenced in CDB to indicate where to get data
and where to store data.

If the return status of an OSD command is CHECK
CONDITION, sense data are also returned to report errors
generated in OSD logical units. The sense data contain in-
formation that allows initiators to identify the OSD object
in which the reported error was detected. If possible, a spe-
cific byte or range of bytes within a user object is identified
as being associated with an error. Any applicable errors
can be reported by include the appropriate sense key and
additional sense code to identify the condition. The OSD
specification chooses descriptor format sense data to report
all errors so several sense data descriptors can be returned
together.

2.4. Security Model

Figure. 2 shows the OSD security model consisting of
four components [8, 11]: (a) Application Client, (b) Secu-
rity Manager, (c) Policy/Storage Manager, and (d) Object-
based Storage Device (OBSD). Whenever an application
client performs an OSD operation, it contacts the secu-
rity manager in order to get a capability including the op-
eration permission and capability key to generate an in-
tegrity check value with OSD Command Description Block
(CDB). When the security manager receives the capabil-
ity request from the application client, it contacts the pol-

3



icy/storage manager to get a capability including permis-
sion. After obtaining the capability, the security manager
creates a capability key with a key shared between the secu-
rity manager and OBSD and makes the credential consist-
ing of the capability and capability key, which is returned to
the application client. Now the application client copies the
capability included in the credential to the capability por-
tion of the CDB and generates an integrity check value of
the CDB with the received capability key. The CDB with
the digested hash value called the request integrity check
value is sent to the OBSD. When the OBSD receives the
CDB, it checks the validity of the CDB with the request in-
tegrity check value. The shared secret between the security
manager and OBSD for the authentication of the CDB is
maintained by SET KEY and SET MASTER KEY com-
mands [8].

2.4.1. OSD Security Methods There are four kinds of
security methods in OSD [8, 11]: (a) NOSEC, (b) CAP-
KEY, (c) CMDRSP, and (d) ALLDATA.

In NOSEC, since the validity of the CDB is not verified
in CDB, the requested integrity check value is not gener-
ated, but the capability of the CDB is obtained from the
security manager and policy/storage manager.

In CAPKEY, the integrity of the capability included in
each CDB is validated. The requested integrity check value
is computed by the application client using the algorithm
specified in the capability’s integrity check value algorithm
field, the security token returned in the security token VPD
page [8], and the capability key included in credential. The
OBSD validates the CDB sent by the application client with
the request integrity check value included in the CDB and
the newly computed request integrity check value from the
CDB where the request integrity check value field is initial-
ized into zero.

In CMDRSP, the integrity of the CDB (including capa-
bility), status, and sense data for each command is vali-
dated. The application client computes the request integrity
check value of the CDB using the algorithm specified in
the capability’s integrity check value algorithm field, all
the bytes in the CDB with the request integrity check value
field set to zero, and the capability key included in creden-
tial. The OBSD validates the CDB sent by the application
client by comparing the received request integrity check
value with the newly computed request integrity check
value.

In ALLDATA, the integrity of all data between an appli-
cation client and an OBSD in transit is validated. The ap-
plication client computes the request integrity check value
in the CDB using the same algorithm specified for the CM-
DRSP security method, which is validated in the OBSD.
Also, for checking the integrity of the data, the application
client computes the data-out integrity check value using the

Figure 3. Overview of reference implementa-
tion

algorithm specified in the capability’s integrity check value
algorithm field, the used bytes in the Data-Out Buffer seg-
ments [8], and the capability key included in credential.

3. System Design and Implementation

The reference implementation consists of client compo-
nents and server components shown in Figure 3 as grayed
blocks. The client components include three kernel mod-
ules - the osd file system (osdfs), the scsi object device
driver (so) and the iSCSI initiator host driver. The osd file
system is a simple file system using object devices instead
of block devices as its storage. The so driver is a SCSI
upper-level driver and it exports an object device interface
to applications like osdfs. The iSCSI initiator driver is a
SCSI low-level driver providing iSCSI transport to access
remote iSCSI targets over IP networks. The server compo-
nents include the iSCSI target server and the object storage
server. The iSCSI target driver implements the target side
of the iSCSI transport protocol. The object target server
module manages the physical storage media and processes
SCSI object commands. The functions and internal archi-
tectures of these components are elaborated in following
sections.

3.1. OSD Filesystem

The osdfs file system uses object devices as its storage.
Regular files are not surprisingly stored as user objects.
Directory files are also stored as user objects whose data
contain mappings from sub-directory names to user object
identifiers. The metadata of both regular files and directory
files, i.e., information in VFS inodes, are stored as an at-
tribute of their user objects. This mapping from traditional
file system logical view to objects stored in object storages
is illustrated in Figure 4 So far, there is no consideration

4



���

��� ���

���	
���	�


�������
��	�

���	�
���	


���	��

��	�
���	�


�������

�����	�
��

����	

�����������

�����������

��	�
���	�

�������

�����	�
��

����	

���

��	�
���	�


�������

�����	�
��

����	

���

Figure 4. Mapping of files to objects

of special files like device files, pipe or FIFO. For each os-
dfs, a partition object is created to contain all user objects
corresponding to regular files and directory files in the file
system. Therefore, when mounting an existing osdfs, the
partition object identifier and the user object identifier of
the root directory of the file system need to be provided as
mounting parameters.

The osdfs file system is implemented compliant with
VFS like any other file systems on Linux. Therefore, it
can also take advantage of the generic facilities provided
by VFS including inode caches, dentry caches and file page
caches. Different from other block-device file systems like
ext3, osdfs can not use the buffer cache of Linux operating
system since buffer cache is designed for block devices.
In fact, buffer caches are not necessary for applications of
object devices since the purpose of buffer caches is to ac-
cess block disks in large contiguous chunks to achieve high
disk throughput. In the object storage model, this storage
management function is offloaded into object-based stor-
age devices.

The osdfs file system currently is a non-shared file sys-
tem since there is no mechanism in place to coordinate
concurrent accesses from multiple hosts to the same ob-
jects. The OSD standard has not yet defined any con-
currency control mechanism for the objects. In [13], an
iSCSI-target-based concurrency control scheme has been
proposed for iSCSI-based file systems. Similar mechanism
is expected to be added in the future versions of the OSD
standard.

3.2. SCSI Object Device Driver

The SCSI object device driver (so) is a new SCSI upper-
level device driver in addition to SCSI disk (sd), SCSI tape
(st), SCSI CDROM (sr) and SCSI generic (sg) drivers. Its

main function is to manage all detected OSD type SCSI de-
vices just like the sd driver manages all disk type SCSI de-
vices and help the higher level applications to access these
devices.

The so driver provides an well-defined object device in-
terface for higher level application like osdfs to interact
with the registered OSD devices. In this way, applications
and device drivers can be modified without affecting each
other. Currently, this object device interface is exactly the
OSD commands interface define in T10 OSD standard [8].

Linux kernel currently only supports block devices,
character devices and network devices [10]. Fortunately,
the Linux block I/O subsystem was designed so generic
that the object device driver can fit it easily. The so
driver registers itself as a block device to Linux kernel. It
implements the applicable block device methods defined
by the block device operations structure including open,
release, ioctl, check media change and re-validate. The
Linux block I/O subsystem uses request queues to allow
device drivers to make block I/O requests to devices. The
request queue is a very complex data structure designed to
optimize block IO access for disks including IO scheduling
(like elevator, deadline or anticipatory scheduling) and IO
coalescing. Once again, such storage management func-
tions are offloaded into object storages in OSD model. The
so driver bypasses the request queue and directly passes
SCSI commands to SCSI middle-level driver, who will asks
the appropriate SCSI low-level driver to further handle the
commands.

3.3. iSCSI Transport

The iSCSI initiator driver and the iSCSI target server
together implement the iSCSI protocol, which is a SCSI
transport protocol over TCP/IP. It can transport both SCSI
OSD commands and SCSI block commands.

The iSCSI initiator driver is implemented as a low-level
SCSI driver. When the host starts or this driver is loaded
as kernel module after the system starts, it tries to discover
logical units (LUN) on pre-configured iSCSI targets, setup
iSCSI sessions with accessible LUNs and negotiate session
parameters with the targets. During the discovery process,
the targets inform the initiator what type of SCSI device
they are, either OSD or disk currently. The SCSI middle-
level driver asks every known upper-level driver including
so to check whether they are willing to manage the specific
type of device. The so driver will register and manage OSD
type devices and the sd driver will handle disk type devices.
After the discovery phase and parameter negotiation phase,
the sessions enter full feature phase and are ready to trans-
fer iSCSI protocol data units (PDU).

As illustrated in Figure 5, the sending and receiving of
iSCSI PDUs are handled by a pair of worker threads called

5



���������

���������

	
�
���������

������

���	
�
�

���	
�
�

������

������������

������������

���������������

������

���

�������

������������

������

������ ��

���������

���������������

���	
�
� ������ ������ ��

	
�
���������

Figure 5. iSCSI implementation

tx worker and rx worker created for every active iSCSI ses-
sion. Each session has a transmission queue (tx queue) that
the session’s tx worker thread can get the PDUs for send-
ing. When there is no PDU to send in the queue, tx worker
threads are blocked. Any rx worker thread is blocked until
the tx worker thread of its session has successfully sent out
a PDU and unblocks it to receive responses or data.

When applications request to access storage devices,
the SCSI upper-level device drivers are asked to construct
SCSI commands (either OSD commands by so or block
commands by sd). The SCSI middle-level driver passes
the SCSI commands to the iSCSI initiator driver by call-
ing a low-level driver specific queuecommand() method.
When iSCSI initiator driver’s queuecommand() is call, it
encapsulates the SCSI commands and any associated data
into iSCSI PDUs and puts the PDUs on appropriate session
transmission queues. Reversely, the iSCSI initiator driver
decapsulates iSCSI PDUs received on the IP network and
trigger the callback function done(). This callback function
is actually an hardware interrupt handler that enqueues a
delayed software interrupt into the Linux bottom-half (BH)
queue. The application processes waiting for the response
are waken up by the bottom-half handler.

The iSCSI target server is the peer component of the
iSCSI initiator driver. It maintains active sessions with
connected iSCSI initiators. There is one dedicated worker
thread for every session to both receive and transmit iSCSI
PDUs from and to the peer. Noting that there can be multi-
ple sessions between an initiator and a target if the initiator
is allowed to access more than one LUNs on the target.
Received iSCSI PDUs are dispatched to appropriate pro-
cessing functions.

3.4. Object Based Target

The primary function of the object based target is to ex-
pose the T-10 object interface to an initiator and abstract the
details of the actual storage architecture behind this inter-
face. The underlying storage architecture could, in turn, be
based on existing storage technologies (like RAID, NAS,
SAN) or object devices. An implementation of the target
has to address the following key issues: interpret the OSD
SCSI commands from the initiator to match the underlying

storage device, manage free space in the storage architec-
ture, maintain physical locations of data objects, provide
concurrency control. In the next paragraphs, we first pro-
vide a broad overview of our target implementation and
then elucidate few key implementation aspects in further
detail.

Our target executes as a user level server process that
implements an iSCSI target interface. Therefore an iSCSI
initiator can establish a session with the target and exe-
cute OSD SCSI commands. A worker thread is spawned
for each incoming connection and is responsible for decap-
sulating the iSCSI CDB and interpreting the commands.
So the server acts as a command interpreter that affects
the state of the storage based on the commands sent by
the initiator. Our current implementation does not support
concurrency control at the target to maintain consistency
when multiple clients write to the same user object or make
changes to the namespace. In the following paragraphs, we
explain in further detail the two central functions of the ob-
ject based target.

Storage and namespace Management: In order to store
and retrieve user objects, the target should manage the
free space and maintain data structures to locate objects
on the storage device. These two functions form the core
of any filesystem. We therefore offload these tasks to an
ext3 filesystem. All user objects and partitions are mapped
onto the hierarchical namespace that is managed by the
filesystem. Other functionalities like the quota manage-
ment, maintaining fine grained timestamps is done by our
code, outside the scope of the filesystem. As a straightfor-
ward mapping, user objects are mapped to files and parti-
tion objects are mapped onto directories. We currently do
not support collection objects as it is not part of the nor-
mative section of the standard. We also store the attributes
of the root object, partition objects and user objects as files.
We however do realize that this method of using the filesys-
tem as a means to manage storage may have certain draw-
backs. For example, the overhead of opening and reading a
file for a GET ATTRIBUTE command can be prohibitively
high. We have identified optimization of the storage man-
agement module as one of the key areas of future work.

Command Interpreter: The command interpreter is re-
sponsible for converting the object commands into a form
that can be understood by the underlying storage system. In
our case, since we use a file system to abstract the storage,
the command interpreter translates the OSD SCSI com-
mands to filesystem calls. For example, an OSD WRITE
is converted to a write() call and so on. Every command
goes through five distinct phases during its execution.

6



1. Capability Verification: In this step, the capability is
extracted from the CDB and checked if the requested
command can be executed on the specified object. The
command is not executed if the client does not have
the required permissions or the if the credibility of the
CDB cannot be verified. The precise steps have been
discussed in detail in Section-2.4

2. Attribute Pre-process: Every command can get and set
attributes belonging to the object at which the com-
mand is targeted. If the command to be executed is
one of REMOVE, REMOVE PARTITION, REMOVE
COLLECTION, then the attributes should be set and
got before the command is executed. The attribute
preprocess stage checks if the current command be-
longs to this group and if so performs the get and set
attribute operations.

3. Command Execution: During this stage, the command
is actually executed at the target. Each command re-
quires some set of mandatory parameters which either
are embedded into the service action specific field of
same CDB as the command (refer Table 40,41 [8])
or are sent as separate data PDUs. The command is
translated into a file system equivalent and the corre-
sponding system call is made with the required argu-
ments.

4. Attribute Post-process: In this stage all the attributes
that are affected by the execution of the command are
updated. For example : an successful OSD WRITE
operation should change all the attributes related to
quota, timestamp etc. Another task that is performed
in this phase is to process the set and get attribute por-
tion of the CDB if the current command is not one
of

�
REMOVE, REMOVE PARTITION, REMOVE

COLLECTION �

5. Sense data collection: For each session, we maintain
a sense data structure that tracks the execution status
of the commands through the above stages. This data
structure contains information on the partition ID, user
object ID involved, function command bits (refer Ta-
ble 34 in [8]), sense key and additional sense code
(ASC) to track cause of error. Whenever an error oc-
curs during any stage, we update this data structure to
capture the cause of the error. In this final stage, we
encapsulate the sense data structure into a PDU as de-
fined in [8] and return it to the initiator. This additional
information provides the initiator more knowledge to
react to unforeseen circumstances.

���������	���


�����

������	��


������	��


����

Figure 6. Security Manager

3.5. Security

Security is one of the fundamental features of OSD. In
order to access an object, a user must acquire cryptograph-
ically secure credentials from the security manager. Each
credential contains a capability that identifies a specific ob-
ject, the list of operations that may be performed on that
object, and a capability key that is used to securely com-
municate with the OBSD. Before granting access to any
object, each OSD checks whether the requestor has the ap-
propriate credential.

Our implementation contains a client and a server
security module to implement the security mechanisms
between the client and the OBSD as described by the stan-
dard. In addition, we have also implemented a preliminary
security manager that can hand-out capabilities to users
and perform some preliminary key management tasks. The
current implementation assumes that the communication
link between the user and the security manger is secure.
The security manager does not authenticate users; it
assumes that users are already authenticated using any of
the standard mechanisms such as Kerberos [14].

The Security Manager As depicted in figure 6, the secu-
rity manager consists of four modules, namely, the com-
munication module, the credential generator (CG), the
key manager module (KMM), and the capability generator
module (CGM). The communication module is responsible
to handle network communications. The CG is responsible
to generate cryptographically secure credentials using the
keys supplied by the KMM and the access control informa-
tion (capabilities) supplied by the CGM.

In order to acquire a capability, a user should send a ca-
pability request to the security manager. The communica-
tions module transfers the request to CG. The CG queries
the CGM to acquire capability for the requested object. The
CGM maintains a MySQL [5] database that contains access
control information per object. A client has to supply her
UNIX UID and GID along with the requested OID to the
CGM. Using this information, the CGM creates the capa-
bility for that object and returns it to the CG. Upon receipt
of the capability from the CGM, the CG acquires appro-

7



CPU Two Intel XEON 2.0GHz w/ HT
Memory 512MB DDR DIMM
SCSI interface Ultra160 SCSI (160MBps)
HDD Hitachi Ultrastar, 73.5 G,

10,000 RPM
Average seek time 4.7 ms
NIC Intel Pro/1000MF

Table 2. Configuration of OSD Target and
Client

priate key from the KMM to generate a cryptographically
secure credential for that object.

The KMM is responsible to manipulate and generate
appropriate keys. It maintains a repository of keys that
are shared with the OBSDs. It determines the type of key
to be used based on the command requested by the user.
For example, if SET KEY command is desired to change
a certain partition key, then that partition’s root keys are
acquired. The key manager then returns the appropriate
keys to the CG. The CG then generates the credential and
transfers it to the user.

The Client-Server Modules Whenever a user wants to ac-
cess an object, the client side security module transparently
contacts the security manager and obtains a credential for
the requested object. After receiving the credential, the
client cryptographically secures the commands and sends
to the OBSD. According to the T10 standard the client can
choose one of the following four security methods to se-
curely communicate with the OBSD: NOSEC, CAPKEY,
CMDRSP, or ALLDATA. Our current implementation sup-
ports NOSEC, CAPKEY, and CMDRSP methods.

Readers should recall that each OSD shares a set of keys
with the security manager. The security manager is respon-
sible to exchange these keys with each OBSD. The OSD
standard mandates SET KEY and SET MASTER KEY
commands for this purpose. Of these, SET KEY is cur-
rently supported in our implementation.

4. Performance Evaluation

In this section, we evaluate the performance of our
OSD reference implementation. We perform experiments
to evaluate the performance of each component in our im-
plementation. First we describe the testbed that was used in
our experiments and then explain each experiment in detail.

Table 4 shows the configuration of the machines that we
used for the OSD target and client. The embedded giga-
bit ethernet NIC on the server and client connects them to
a Cisco Catalyst 4000 gigabit ethernet switch. We believe
that such a system makes fair emulation of future intelligent

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  20000  40000  60000  80000  100000  120000  140000

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

IO Size (Bytes)

OSD Read
OSD Allocate Write

OSD Non-allocate Write 
iSCSI Write
iSCSI Read

Figure 7. Raw performance comparison of
OSD and iSCSI

storage devices. In each experiment, we compare the per-
formance of the OSD client and target with those of a iSCSI
based SAN storage system and a NFS based NAS device.
For all the above storage configurations, the same client-
server machine combination was used, same disk partitions
were used at the target to ensure the disk performance re-
mains constant across all configurations. We used the Intel
iSCSI initiator and target to set up the iSCSI configuration.
Loading the initator driver creates a SCSI device on the
client. iSCSI performance is measured on a ext2 filesystem
constructed on this SCSI device. For the NAS configura-
tion, we set up the NFS daemon on the target and exported
a directory in the common test partition on the target.

In the first experiment, we measure the raw read, write
performance of the OSD target and compare it with the
iSCSI configuration. The motive of this experiment is to
measure the performance of the storage target without the
overhead of the filesystem and effects of client caching. In
this experiment, we write/read a 4MB file with multiple
transfer sizes and measure the throughput. Figure 7 shows
the results of this experiment. The iSCSI write operation
writes a series of blocks, each of size equal to the trans-
fer size on the block device. For the OSD case, we have
two variations of the write operation: Allocate Write and
Non-Allocate Write. The allocate write creates a user ob-
ject at the target and allocates space at the target (by ap-
pending to existing object) for every write operation. The
Non-Allocate Write, on the other hand, just re-writes over
the pre-allocated blocks reserved by the Allocate Write.
So the allocate write has the extra overhead of finding un-
used blocks on disk and updating the filesystem data struc-
tures at the target. This overhead explains the slightly de-
graded performance in the allocate write case when com-
pared to the non allocate write. The semantics of the iSCSI
write operation is closest to that of the OSD Non-Allocate
Write. In general, the performance of an OSD operation is

8



Command Latency (µsec)
CAPKEY CMDRSP

CREATE PARTITION 15040 14797
CREATE 3745 4024

LIST 1928 1970
LIST ROOT 1713 1896

SET ATTRIBUTE 1689 1950
WRITE 2141 2306

APPEND 2085 2263
READ 1654 1863

GET ATTRIBUTE 1677 1902
REMOVE 8387 8616

REMOVE PARTITION 10046 10178

Table 3. Per operation Latency

lower than that of the corresponding iSCSI operation due
to the overhead imposed by the security mechanisms, con-
text switches and filesystem overhead at the target. Also it
can be noted that, for both iSCSI and OSD, higher transfer
sizes yield better throughput. This is because the overall
overhead of constructing PDUs is lesser for higher transfer
sizes when compared to lower transfer sizes. The through-
put saturates before reaching the network bandwidth limit
of 1Gbps, indicating performance bottlenecks in both the
iSCSI driver and OSD target implementations.

In the second experiment, we measure the latency of
some OSD commands as seen by the OSD client. We in-
strumented the raw performance measurement tool used in
the first experiment to gather the latency results. Table 3
reports the measured latencies for the two implemented se-
curity methods: CAPKEY and CMDRSP. First of all, we
observe that CREATE PARTITION and REMOVE PAR-
TITION have latencies which are an order of magnitude
higher than other commands that operate on partitions (like
LIST, GET ATTRIBUTE). These high numbers can be ex-
plained by breaking up command execution into the vari-
ous events that happen. For a CREATE PARTITION, the
target first creates a directory in the filesystem namespace
and then creates one file for each mandatory attribute for
the partition. 42 files were created in all for this pur-
pose. Similarly the DELETE PARTITION command first
deletes all the files associated with the partition attributes
and then deletes the directory itself. This also explains why
the CREATE and REMOVE commands have high latencies
when compared to the other commands that operate on user
objects. For the WRITE, APPEND and READ commands,
64 bytes of data were either written or read. The latencies
while using the NOSEC method were observed to be very
similar to the ones reported for CMDRSP and CAPKEY.
This is because the additional cryptographic overhead2 in-
curred in CMDRSP and CAPKEY is negligible when com-

2With openssl, it takes 3.49 µsec to perform a HMAC operation for a
block size of 256 bytes.

Figure 8. IOZone: Sequential Read

Figure 9. IOZone: Sequential Write

pared to the network latency. In other words, the network
latency is the dominant factor in the overall observed la-
tency.

In the third experiment, we study the performance of
OSD system using the IOZone filesystem benchmark [3].
Figures 8, 9 shows the throughput obtained across multi-
ple file sizes and transfer sizes. (Zero throughput points
in the graph indicate that measurements were not made for
the corresponding file and record sizes) We can see that the
earlier trend that we observed in Figure 7, where through-
put increases with the transfer size, can no longer be seen
and the throughput surface is almost flat. The only differ-
ence in setup between Experiments 1 and 3 is that osdfs
was introduced in the third experiment. So we can deduce
that the overhead introduced by the OSD filesystem is sub-
stantially high enough to mask the effect of transfer sizes.
The ext2 filesystem on iSCSI was able to reach a maxi-
mum throughput of 60MB/sec for read operations and 41
MB/sec for write operations. NFS was able to attain a max-
imum throughput of 75 MB/sec for read and 18 MB/sec for
write operations. Improving osdfs is one of the main issues
that we identify as future work.

9



5. Related Work

In this section, we present other efforts geared towards
building the reference implementation for the OSD T-10
spec. In the Object Store project at IBM Haifa Labs, a T-
10 compliant OSD initiator [2] and a OSD Simulator [1]
have been developed. A recent paper [18], from the same
group, discusses tools and methodologies to test OSDs for
correctness and compliance with the T10 standard. A sim-
ple script language is defined which is used to construct
both sequential and parallel workloads. A tester program
reads the input script file and generates OSD commands
to the target and verifies the correctness of the result. Our
work can complement IBM’s implementation in providing
a more usable interface to applications through our file sys-
tem: osdfs. Also our implementation provides complete
reporting of sense data back to the initiator.

6. Conclusion and Future Work

In this paper we presented our experiences with the im-
plementation of the SCSI OSD (T-10) standard. Design and
implementation issues at the target, client file system and
the security manager were discussed and performance anal-
ysis results also presented. The forte of our implementation
does not lie in the performance but rather in the complete-
ness of the implementation and the usability of the system
as a whole.

We have identified three broad areas where substantial
amount of work remains to be done. The first area, namely
feature additions, focuses on adding some extra capabili-
ties and functionalities to further demonstrate the advan-
tages of the object based technology. First task in this area
is implement the remaining OSD commands (PERFORM
SCSI COMMAND, PERFORM TASK MANAGEMENT
FUNCTION, SET MASTER KEY). The second task in this
category is to design and build a metadata server (MDS).
A dedicated metadata server is essential in separating the
data and control path. The MDS will also perform global
namespace management, concurrency control and object
location tracking. [9] presents a relevant technique to map
objects in a hierarchical namespace to a flat namespace.
We also want to test interoperability of our implementation
with the IBM initiator [2].

The second area of future work revolves around perfor-
mance improvement of the current implementation. The
performance of our target and the client implementation
needs to be improved to fully realize the true benefits of
object based storage systems. We plan to optimize the tar-
get in two distinct phases. In the first phase, the filesystem
abstraction of storage will be replaced by a compact object-
based, flat namespace storage manager. [19] presents a
filesystem based on a flat, object based namespace. Tech-

niques to efficiently store and retrieve extended attributes
will be investigated and implemented. In the second phase,
we plan to further optimize the target code to have it exe-
cute in minimal environments like RAID controller boxes.

Infusing Intelligence into the storage device is the third
area that we have identified to channel our efforts into in
the future. The object abstraction and extended attributes
are excellent mechanisms to convey additional information
to the storage device. One such example is providing QoS
requirements of the objects [15]. How to use this addi-
tional information, to benefit the system, is termed as the
storage intelligence. For example, [16] shows how QoS re-
quirements, provided as service level agreements, can be
used to schedule requests within the storage device. We
want to investigate what knowledge can be provided to the
storage and then design mechanisms that can exploit such
additional knowledge to improve the performance of the
storage device.

We also want to explore how applications in the real
world, like data warehouses for Medical Information Sys-
tems, can benefit from intelligent storage. We are currently
working with Mayo Clinic (Rochester) on building a sys-
tem that can enable seamless data-mining across structured
and unstructured data for medical research. We are inves-
tigating on building integrated indexing and search mech-
anisms at the storage device and layout optimizations to
match the characteristics of the data. These algorithms
would eventually be layered over our OSD implementation
to demonstrate the capabilities of intelligent storage.

Acknowledgements

We would like to thank Mike Mesnier for providing
us with the initial implementation of the reference model.
We would also like to thank Nagapramod Mandagere and
Biplob Debnath for testing our implementation for com-
pliance with the standard. This work was supported by
the following companies through DTC Intelligent Storage
Consortium (DISC) : Sun Microsystems, Symantec, Enge-
nio/LSI Logic, ETRI/Korea and ITRI/Taiwan.

References

[1] IBM object storage device simulator for linux.
http://www.alphaworks.ibm.com/tech/
osdsim/.

[2] IBM OSD initiator. http://sourceforge.
net/projects/osd-initiator.

[3] Iozone filesystem benchmark. http://www.
iozone.org.

[4] Lustre. http://www.lustre.org.

10



[5] MySQL Version 5.0. http://dev.mysql.com/.

[6] Panasas. http://www.panasas.com.

[7] SCSI Architecture Model-3 (SAM-3). Project
T10/1561-D, Revision 14. T10 Technical Committee
NCITS, September 2004.

[8] SCSI Object-Based Storage Device Commands -2
(OSD-2). Project T10/1721-D, Revision 0. T10 Tech-
nical Committee NCITS, October 2004.

[9] S. Brandt, L. Xue, E. Miller, and D. Long. Effi-
cient metadata management in large distributed file
systems. In Twentieth IEEE/Eleventh NASA Goddard
Conference on Mass Storage Systems and Technolo-
gies, April 2003.

[10] Jonathan Corbet, Alessandro Rubini, and Greg
Kroah-hartman. Linux Device Drivers. O’Reilly, 3rd
edition, Feburary 2005.

[11] Michael Factor, David Nagle, Dalit Naor, Eric Reidel,
and Julian Satran. The OSD security protocol. In Pro-
ceeding of 3rd International IEEE Security in Storage
Workshop, December 2005.

[12] Gibson G.A., Nagle D.F., Amiri K., Chang F.W.,
Feinberg E.M, Gobioff H., Lee C., Ozceri B., Riedel
E., and Rochberg D. A case for network-attached se-
cure disks. In CMU SCS Technical Report CMU-CS-
96-142, September 1996.

[13] Dingshan He and David Du. An efficient data sharing
scheme for iscsi-based file systems. In Proceeding of
12th NASA Goddard, 21st IEEE Conference on Mass
Storage Systems and Technologies, April 2004.

[14] J. Linn. The kerberos version 5 GSS-API mechanism.
RFC 1964, June 1996.

[15] Yingping Lu, David Du, and Tom Ruwart. Qos provi-
sioning framework for an osd-based storage system.
In Proceeding of 13th NASA Goddard, 22nd IEEE
Conference on Mass Storage Systems and Technolo-
gies, April 2005.

[16] C. Lumb, A. Merchant, and G. Alvarez. Facade: Vir-
tual storage devices with performance guarantees. In
Usenix conference on File and Storage Technologies
(FAST), 2003.

[17] M. Mesnier, G. Ganger, and E. Riedel. Object-based
storage. IEEE Communications Magazine, 41(8):84–
90, August 2003.

[18] P. Reshef, O. Rodeh, A. Shafrir, A. Wolman, and
E. Yaffe. Benchmarking and testing osd for cor-
rectness and compliance. In In Proceedings of
the IBM Verification Conference (Software Testing
Track), November 2005.

[19] F. Wang, S. Brandt, E. Miller, and D. Long. OBFS:
a file system for object-based storage devices. In
Proceeding of 12th NASA Goddard, 21st IEEE Con-
ference on Mass Storage Systems and Technologies,
April 2004.

11


