

IMGUI

Jetro Lauha - www.jet.ro

Jari Komppa – www.iki.fi/sol

2007-08-02
ASSEMBLY Summer'07

The What?

Immediate Mode Graphical User Interface
(as opposed to “retained mode”)

“My First UI”

printf(“Are you sure? [y/N] “);
fflush(stdout);

if (toupper(getch()) == 'Y')
 exit(0);

“My First GUI”

FillRect(50, 50, 100, 30);
DrawText(80, 55, “Quit”);

if (mouseButtonDown &&
 mx >= 50 && mx <= 150 &&
 my >= 50 && my <= 80)
 exit(0);

Button

“My First GUI”

FillRect(80, 20, 100, 5);
x = 80 + position * 100;
DrawLine(80 + x, 15, 80 + x, 30);

if (mouseButtonDown &&
 mx >= 80 && mx <= 180 &&
 my >= 15 && my <= 30)
 position = (mx – 80) / 100;

Slider

That Was Simple, But...

● Doesn't behave like proper UI components
● So you typically have a system with...

– component hierarchy, lifetime management, data
synchronization, event handler (loop), event
listeners, layouters, rendering, ... and so on ...

● Usage isn't much easier than complexity of the
system itself

● GUI development turned into a “retained”
model

Small IMGUI example..

if (button(GEN_ID, 15, 15, “Quit”))
{
 exit(0);
}

Anatomy of a button

bool button(int id, int x, int y, char *text)
{
 // Check whether the button should be hot
 if (mouseInsideRectangle(x, y, strlen(text) * 8 + 16, 48))
 {
 uiState.hotItem = id;
 if (uiState.activeItem == 0 && uiState.mouseDown)
 uiState.activeItem = id;
 }

 ... // Render button

 // If button is hot and active, but mouse button is not
 // down, the user must have clicked the button.
 if (uiState.mouseDown == 0 &&
 uiState.hotItem == id &&
 uiState.activeItem == id) return true;

 return false; // Otherwise, no clicky.
}

Are you hot or not?

Active

Not
Active

Hot Not Hot

uiState

bool button(int id, int x, int y, char *text)
{
 // Check whether the button should be hot
 if (mouseInsideRectangle(x, y, strlen(text) * 8 + 16, 48))
 {
 uiState.hotItem = id;
 if (uiState.activeItem == 0 && uiState.mouseDown)
 uiState.activeItem = id;
 }

 ... // Render button

 // If button is hot and active, but mouse button is not
 // down, the user must have clicked the button.
 if (uiState.mouseDown == 0 &&
 uiState.hotItem == id &&
 uiState.activeItem == id) return true;

 return false; // Otherwise, no clicky.
}

UI State (simple case)

struct UIState
{
 int mouseX;
 int mouseY;
 int mouseDown;

 int hotItem;
 int activeItem;
}
uiState;

void beginGUI()
- clear hotItem

void endGUI()
- clear activeItem
 (if needed)

id

bool button(int id, int x, int y, char *text)
{
 // Check whether the button should be hot
 if (mouseInsideRectangle(x, y, strlen(text) * 8 + 16, 48))
 {
 uiState.hotItem = id;
 if (uiState.activeItem == 0 && uiState.mouseDown)
 uiState.activeItem = id;
 }

 ... // Render button

 // If button is hot and active, but mouse button is not
 // down, the user must have clicked the button.
 if (uiState.mouseDown == 0 &&
 uiState.hotItem == id &&
 uiState.activeItem == id) return true;

 return false; // Otherwise, no clicky.
}

GEN_ID

● IDs must be unique for all active widgets
● Many solutions

– __LINE__

– Widget's rectangle

– Incrementing variable

– Etc.
● All solutions have good and bad sides
● Keep It Simple, Stupid!

The good..

● No object creation
● No cleanup either
● No queries for information
● No message passing
● Data owned by application, not the widget
● Everything is “immediate” - one call per

widget, each frame, handles behavior and
rendering.

..the bad..

● Requires different kind of thinking
● Wastes CPU time

– But in games you're re-rendering stuff 50+ fps
anyway..

● UI generated from code; No designer-friendly
tools.
– Unless you make some...

..and the ugly.

● While making easy things dead easy, makes
complicated things very complicated.
– The UI system internals may become even more

complex than in “traditional” GUI library!
● UI logic interleaved to rendering

– Can be overcome by more complex internals.
● Pretty “anti-OOP” (although this is debatable)

● Not a silver bullet.

Case Studies

● IMGUI with J2ME
– Habbo Animator, yet to be released project by

Sulake Corporation

– Works on wide set of J2ME devices with very
limited resources

● IMGUI with PS3
– Super StardustTM HD - created by Housemarque

– For PLAYSTATION®3
● Available now in PlayStation Network

Case: IMGUI with J2ME

● Scales dynamically from tiny to big resolutions
– All resolutions supported by the same build

Case: IMGUI with J2ME

● Key-based actions
– Key presses saved to a ring buffer

● Screen & focus managing by framework
– Application screens have an enumerated type

● Focus remembered for each screen type

– Focus reset when entering screen, but recalled
when returning to it

– Likewise component types are enumerated
● Some data saved per type, e.g. scroll position

Case: IMGUI with J2ME

● List-based UI component
– listBegin(listId, …),

listButton(listId, index, …), ... ,
listEnd(listId, itemCount, …)

– Draw customizations after
calling listButton

– Handles all pending movements from key buffer
● Better usability on very slow devices where FPS is lower

– Draws arrows to indicate scrolling possibility
● In listEnd(), as itemCount is then known

Case: IMGUI with J2ME

● Scroll panels
– Given rectangle, font and text...

● Text printed with word wrapping,
also amount of rows counted
for the scrolling arrows

– Amount of visible rows in the
rectangle is reduced with lower
resolutions

Case: IMGUI with J2ME

● Multi-tap text input
– Manages the key tap timeouts,

current key and char index

– Component given a text editing temp
array and characters for each key

● Other things
– Timed out pop-ups for notifications

● If key is pressed, it is consumed and popup is dismissed

– Shortcut support for menus (expert mode)

Case: IMGUI with J2ME

● Post mortem observations
– Implementation of the framework

was slightly harder than previous
non-IMGUI one

● Both had same design constraints

– IMGUI a bit easier for new screens
● Clearly better for dynamic stuff

– No significant difference in memory
usage compared to previous system

● Probably slightly less separate objects overall

Case: IMGUI with PS3 - SSHD

Case: IMGUI with PS3 - SSHD

● Designers define UI using locators
– Position, size, text alignment, custom attributes

– Explicit id defined for each component
● Rendering separated from UI logic

– Visual update animates screens (also enter/leave)

– Logic update is the actual IMGUI code
● Uses locator id to identify components

– Structurally mostly static screens

Case: IMGUI with PS3 - SSHD

Other Cases
● Cinnamon Beats

– In Assembly'07 game development compo. :-)
● Zero Memory Widget library

– whitepaper and first implementation from 2003
● Boom! Boom! Driller

– Asm'06 game
● Musagi

– music editor and
synthesizer with
fairly complex UI

More info

http://iki.fi/sol/imgui/
- Tutorial, different widgets, keyboard use etc.

http://www.mollyrocket.com/video/imgui.avi
- The original video lecture

https://mollyrocket.com/forums/viewforum.php?f=10
- original IMGUI forums

Game Developer magazine, September 2005, Volume 12, Number 8, Pages
34-36

http://www710.univ-lyon1.fr/~exco/ZMW/
- Zero Memory Widget library

http://www.cyd.liu.se/~tompe573/hp/
- Musagi

Backup Slide:

Decoupling Logic and Visual Look
● Button as an example

– Define a ButtonStyle class
● Defines isInside() and render() methods

● Inherit and create a custom one
– E.g. ImageButtonStyle which takes in an image for

each button state (on/off for hot and active)

– Give pointer to the ButtonStyle object in the
button(...) call

Backup Slide:

From Prototype Version to Final
● One idea to make it easier to move from quick

prototype to the fine-tuned final version:
– Create hard-coded UI (positions etc.) with each

component having an textual id as well

– Support loading of UI screen definition files

– If the file has a component definition for a given
textual id, it overrides the hard-coded values

