
 Journal of Visual Languages and Computing (1996) 7 , 33 – 55

 The Hyperbolic Browser : A Focus 1 Context Technique
 for Visualizing Large Hierarchies

 J ONH L AMPING AND R AMANA R AO

 Xerox Palo Alto Research Center , 3 3 3 3 Coyote Hill Road , Palo Alto , CA 9 4 3 0 4 , U .S .A .
 (lamping , rao) ê parc .xerox .com

 Received 3 April 1 9 9 5 and accepted 2 9 September 1 9 9 5

 We present a new focus 1 context technique based on hyperbolic geometry for
 visualizing and manipulating large hierarchies . Our technique assigns more display
 space to a portion of the hierarchy while still embedding it in the context of the entire
 hierarchy . We lay out the hierarchy in a uniform way on a hyperbolic plane and map
 this plane onto a display region . The chosen mapping provides a fisheye distortion
 that supports a smooth blending of focus and context . We have deveoped ef fective
 procedures for manipulating the focus using pointer clicks as well as interactive
 dragging and for smoothly animating transitions across such manipulation . Enhance-
 ments to the core mechanisms provide support for multiple foci , control of the
 tradeof f between node density and node display space , and for visualizing graphs by
 transforming them into trees . ÷ 1996 Academic Press Limited

 1 . Introduction

 In the last few years , Information Visualization research has explored the application
 of interactive graphics and animation technology to visualizing and making sense of
 larger information sets than would otherwise be practical [17] . An important aspect of
 this work has been the development of focus 1 context techniques for various classes
 of information structures , for example , hierarchical [18] , chronological [11] , calendar
 [12] and tabular information [15] . In these techniques , a detailed view of a portion of
 an information set is blended with a view of the overall structure of the set typically
 using some kind of ‘fisheye’ distortion of the entire structure . In addition ,
 manipulation operations for controlling the mapping and navigating around the
 structures are provided . In this paper , we present a new focus 1 context technique ,
 called the hyperbolic browser , for visualizing and manipulating large hierarchies .

 The hyperbolic browser , illustrated in Figure 1 , was originally inspired by the
 Escher woodcut shown in Figure 2 . Two properties of the figures are salient : first ,
 components diminish in size as they move outwards and , second , there is an
 exponential growth in the number of components with increasing radius . These
 properties—fisheye distortion and the ability to uniformly embed an exponentially
 growing structure—are the aspects of this construction (the Poincare ́ mapping of the
 hyperbolic plane) that originally attracted our attention .

 The hyperbolic browser initially displays a tree with its root at the center , but the

 1045-926X / 96 / 010033 1 23 $18 . 00 / 0 ÷ 1996 Academic Press Limited

 J . LAMPING AND R . RAO 34

 Figure 1 . A partial organization chart of Xerox (ca . 1988)

 display can be transformed smoothly to bring other nodes into focus , as illustrated in
 Figure 3 . In all cases , the amount of space available to a node falls of f as a continuous
 function of its distance in the tree from the node in focus . Thus , the context always
 includes several generations of parents , siblings and children , making it easier for the
 user to explore the hierarchy without getting lost .

 The hyperbolic browser supports ef fective interaction with much larger hierarchies
 than conventional hierarchy viewers and complements the strengths of other novel
 tree browsers . In a 600 pixel by 600 pixel windows , a standard 2D hierarchy browser

 Figure 2 . Original inspiration for the hyperbolic browser . Circle Limit IV (Heaven and Hell) , 1960 ,
 ÷ 1994 M . C . Esher / Cordon Art—Baarn—Holland . All rights reserved . Printed with permission

 THE HYPERBOLIC BROWSER 35

 Figure 3 . Clicking on the blackened node brings it into focus at the center

 (1) (3)

 (2) (4)

 can typically display 100 nodes (w / 3 character text strings) . The hyperbolic browser
 can display 1000 nodes of which about the 50 nearest the focus can show from 3 to
 dozens of characters of text . Thus , the hyperbolic browser can display up to 10 times
 as many nodes while providing more ef fective navigation around the hierarchy . The
 scale advantage is obtained by the distortion of the elements of the tree display
 according to their distance from the focus , while easy navigation is obtained by
 interactive mechanisms for controlling the target area of focus .

 Our approach is based on hyperbolic geometry [3 , 13] , though fortunately it does
 not require users to understand hyperbolic geometry . The essence of the approach is
 to lay out the hierarchy on the hyperbolic plane and map this plane onto a display
 region . On the hyperbolic plane (a construct of a non-Euclidean geometry) parallel
 lines diverge away from each other . This leads to the convenient property that the
 circumference of a circle grows exponentially with its radius , which means that
 exponentially more space is available with increasing distance . Thus , hierarchies—
 which tend to expand exponentially with depth—can be laid out uniformly in
 hyperbolic space , such that the distance between parent and child and between
 siblings (as measured in the hyperbolic geometry) is approximately the same
 everywhere in the hierarchy .

 While the hyperbolic plane is a mathematical abstraction , it can be mapped in a
 natural way onto the Euclidean unit disk , which provides a basis for display on
 conventional screens . The mapping focuses on one point on the hyperbolic plane by
 using more of the disk for portions of the plane near that point than on other

 J . LAMPING AND R . RAO 36

 portions of the plane ; remote parts of the hyperbolic plane get miniscule amounts of
 space near the edge of the disk . Moving the focus point over the hyperbolic
 plane—equivalent to translating the hierarchy on the hyperbolic plane—provides a
 mechanism for controlling which portion of the structure receives the most space
 without compromising the illusion of viewing the entire hyperbolic plane . Other
 transformations of the mapping from the hyperbolic plane to the display can yield
 other ef fects , including changing the relative amount of the display dedicated to the
 focus nodes and providing multiple foci .

 Motion in the hyperbolic plane can yield unintuitive results but these problems can
 be avoided by careful design . We have developed ef fective procedures for manipulat-
 ing the focus using pointing and dragging and for smoothly animating transitions
 across such manipulation .

 The performance requirements of the hyperbolic browser are relatively modest and
 can be achieved on today’s median personal computer . In particular , this is true
 because our approach supports incremental layout and allows bounding the maximum
 cost of redisplay by truncating redisplay of nodes below a given resolution limit . Our
 original Commonlisp prototype runs adequately on low-end Unix workstations by
 using rendering degradation during animation . A portable C 11 implementation
 (which supports Unix / X , Windows 3 . 1 , and Windows NT) achieves frame rates of
 under 50 milliseconds for 1000 node trees on an Iris Indigo and a Pentium PC .

 2 . Problem and Related Work

 Many hierarchies , such as organization charts of directory structures , are too large to
 display in their entirety on a computer screen . The conventional display approach
 maps all the hierarchy into a region that is larger than the display and then uses
 scrolling to move around the region . This approach has the problem that the user
 cannot see the relationship of the visible portion of the tree to the entire structure
 (without auxiliary views) . It would be useful to be able to see the entire hierarchy
 while focusing on any particular part so that the relationship of parts to the whole can
 be seen and so that focus can be moved to other parts in a smooth and continuous
 way .

 A number of focus 1 context display techniques have been introduced in the last
 fifteen years to address the needs of many types of information structures [10 , 21] .
 Many of these focus 1 context techniques , including the document lens [19] , the
 perspective wall [11] , and the work of Sarkar et al . [20 , 22] , could be applied to
 browsing trees laid out using conventional 2D layout techniques . The problem is that
 there is no satisfactory conventional 2D layout of a large tree because of its
 exponential growth . If leaf nodes are to be given adequate spacing , then nodes near
 the root must be placed very far apart , obscuring the high level tree structure and
 leaving no nice way to display the context of the entire tree .

 The Cone Tree [18] modifies the above approach by embedding the tree in a three
 dimensional space . This embedding of the tree has joints that can be rotated to bring
 dif ferent parts of the tree into focus . This requires currently expensive 3D animation
 support . Furthermore , trees with more than approximately 1000 nodes are dif ficult to
 manipulate . The hyperbolic browser is two dimensional and has relatively modest
 computational needs , making it potentially useful on a broad variety of platforms .

 THE HYPERBOLIC BROWSER 37

 Another novel tree browsing technique is treemaps [7] which allocates the entire
 space of a display area to the nodes of the tree by dividing the space of a node among
 itself and its descendants according to properties of the node . The space allocated to
 each node is then filled according to the same or other properties of the node . This
 technique utilizes space ef ficiently and can be used to look for values and patterns
 amongst a large collection of values which agglomerate hierarchically ; however , it
 tends to obscure the hierarchical structure of the values and provides no way of
 focusing on one part of a hierarchy without losing the context .

 Some conventional hierarchy browsers prune or filter the tree to allow selective
 display of portions of the tree that the user has indicated . This still has the problem
 that the context of the interesting portion of the tree is not displayed . Furnas [4]
 introduced a technique whereby nodes in the tree are assigned an interest level based
 on distance from a focus node (or its ancestors) . Degree of interest can then be used to
 selectively display the nodes of interest and their local context . Though this technique
 is quite powerful , it still does not provide a solution to the problem of displaying the
 entire tree . In contrast , the hyperbolic browser is based on an underlying geometry
 that allows for smooth blending of focus and context and continuous repositioning of
 the focus .

 Bertin [2] illustrates that a radial layout of the tree could be uniform by shrinking
 the size of the nodes with their distance from the root . The use of hyperbolic
 geometry provides an elegant way of doing this while addressing the problems of
 navigation . The fractal approach of Koike and Yoshihara [8] of fers a similar technique
 for laying out trees . In particular , they have explored an implementation that
 combines fractal layout with Cone Tree-like technique . The hyperbolic browser has
 the benefit that focusing on a node shows more of the node’s context in all directions
 (i . e . ancestors , siblings and descendants) . The fractal view has a more rigid layout (as
 with other multiscale interfaces) in which much of this context is lost as the viewpoint
 is moved to lower levels of the tree .

 Hopkins’ Pseudo Scientific Visualizer [6] also exploits radial layout and diminishing
 scale . A tree is laid out by laying out the children of a node at an equal distance in a
 circle around the node and recursing to each child with a smaller distance for its
 children . All graphical elemets (e . g . fonts , glyphs) are scaled during the recursion .
 This technique can be extended to support interactive navigation by descending into
 any subtree and scaling it up to fill the window . However , further design work is
 needed to provide ancestral context during descent into the tree .

 There have been a number of projects to visualize hyperbolic geometry , including
 an animated video of moving through hyperbolic space [5] . The emphasis of the
 hyperbolic browser is a particular exploitation of hyperbolic space for information
 visualization . We do not expect the user to know or care about hyperbolic geometry .

 3 . Hyperbolic Browser Basics

 The essential operations of the hyperbolic browser can be understood without
 detailed understanding of hyperbolic geometry . The mathematical details of the
 implementation are deferred to a later section . The hyperbolic browser lays out a tree
 on the hyperbolic plane and then maps the structure to the Euclidean plane during the
 display operation . Change of focus is handled by changing the mapping from the

 J . LAMPING AND R . RAO 38

 hyperbolic plane to the Euclidean plane . Thus , node positions in the hyperbolic plane
 need not be altered during focus manipulation . Yet , the mapping is inexpensive .
 Further , it need be applied only to nodes currently visible at screen resolution . Thus ,
 display cost converges to a constant a . Space for displaying node information is also
 computed during layout and mapped through the mapping , again avoiding exhaustive
 update during change of focus .

 3 .1 . Layout

 Laying a tree out in the hyperbolic plane is easier than on a Euclidean plane because
 the circumference and area of a circle grow exponentially with its radius . There is lots
 of room . Our recursive algorithm lays out each node based on local information . A
 node is allocated a wedge of the hyperbolic plane , angling out from itself , to put its
 descendants in . It places all its children along an arc in that wedge , at an equal distance
 from itself and far enough out so that the children are some minimum distance apart
 from each other . Each of the children then gets a sub-wedge for its descendants .
 Because of the way parallel lines diverge in hyperbolic geometry , each child will
 typically get a wedge that spans about as big an angle as its parent’s wedge yet none of
 the children’s wedges will overlap . To compute children’s positions in terms of
 parent’s positions , the layout routine navigates through the hyperbolic plane in terms
 of operations like moving some distance or turning through some angle . These
 operations are provided by the underlying implementation of the hyperbolic plane .

 Figure 4 shows what the layout of a uniform tree looks like . Notice how the
 children of each node span about the same angle , except near the root , where a larger

 Figure 4 . A uniform tree of depth 5 and branching
 factor 3 (364 nodes)

 Figure 5 . The initial layout of a tree with 1004
 nodes using a poisson distribution for number of

 children . The origin of the tree is the center

 a Our performance measurements using uniform trees on our portable C 11 implementation show a
 logarithm growth in display time up to several thousands nodes , after which display time approaches a
 constant .

 THE HYPERBOLIC BROWSER 39

 wedge was available initially . To get a more compact layout for non-uniform trees , we
 modify this simple algorithm slightly so that siblings that themselves have lots of
 children get a larger wedge than siblings that do not (the wedge size grows
 logarithmically) . This ef fect can be seen in Figure 5 where , for example , the five
 children of the root get dif ferent amounts of space . This tends to decrease the
 variation of the distances between grandchildren and their grandparent .

 The layout routine has the convenient property that the layout of a node depends
 only on the layout of its parent and on the node structure of two (or maybe three)
 generations starting from the parent . In particular , there are no global considerations
 in the layout ; the roominess of hyperbolic space renders that unnecessary . As a result ,
 the layout need not be done all at once but can be done incrementally . For example , if
 a user requests to browse a directory structure , there is no need to traverse the entire
 structure before displaying anything . Instead , the nodes nearest the root can be laid
 out and displayed , and then more nodes added as more of the structure is traversed . If
 the user adjusts the focus , the traversal can give priority to the part of the directory
 near the focus so that the region in focus is always populated .

 An important parameter to the layout routine is the minimum spacing (in the
 hyperbolic plane) between siblings . A small value for this parameter , as seen on the
 top of Figure 6 , results in nodes being relatively close to each other and with the
 children of a node subtending a rather small angle . This also puts relatively more
 nodes in the focus region , but gives each less space . A large value has the opposite
 ef fect , as seen in the bottom part of Figure 6 . The preferred value depends , in part , on
 the tradeof f between showing overall tree structure vs . more information about nodes .

 Another option in layout (in contrast to all examples so far illustrated) is to use less
 than the entire 360 degree circle for spreading out the children of the root node . With
 this option , children of the root could all be put in one direction , for example , to the
 right or below , as in conventional layouts . An example of this option , discussed
 below , appears in Figure 10 .

 3 .2 . Mapping

 Once the tree has been laid out on the hyperbolic plane , it must be mapped in some
 way to the ordinary Euclidean plane for display (we can barely imagine the
 hyperbolic plane , not to mention see it) . There are two canonical ways of mapping the
 hyperbolic plane to the Euclidean plane . Both map the hyperbolic plane to the unit
 disk and put one vicinity of the hyperbolic plane in focus at the center of the disk
 while having the rest of the hyperbolic plane fade of f in a perspective-like fashion
 toward the edge of the disk . One mapping , the projective mapping or Klein model ,
 preserves straightness : lines in the hyperbolic plane become chords across the unit
 disk . The other mapping , called the Poincare ́ model , is conformal : it preserves angles
 but maps lines in the hyperbolic space into arcs on the unit disk (as can be seen in the
 figures) .

 The Poincare ́ model worked more ef fectively for our purposes . Points that are
 mapped near to the edge by the Poincare ́ model get mapped almost right on the edge
 by the Klein model . As a result , nodes more than a link or two from the node in focus
 get almost no screen real-estate , thus limiting the context . Furthermore , the Klein
 mapping severely distorts angles towards the edge of the disk . The Poincare ́ model , in

 J . LAMPING AND R . RAO 40

 Figure 6 . Layout using small , medium and large values for minimum spacing between siblings

 THE HYPERBOLIC BROWSER 41

 Figure 7 . The tree on the left is the same as Figure 5 . The focus has moved in the right image to a node that
 was to the left and slightly below the origin in the left image

 contrast , not only does a better job of dividing display space between focus and
 context , but also preserves angles and local shapes so that structures throughout the
 display are easier to interpret and compare .

 3 .3 . Change of Focus

 The user can change focus either by clicking on any visible point to bring it into focus
 at the center , or by dragging any visible point interactively to any other position . In
 either case , the rest of the display transforms appropriately . Regions that approach the
 center become magnified , while regions that were in the center shrink as they move
 toward the edge . Figure 7 shows the same tree as Figure 5 but with a dif ferent focus
 (right hand image) . The root has been shifted to the right , putting more focus on the
 nodes that were toward the left .

 Changes of focus are implemented by adjusting the focus of the mapping from the
 hyperbolic plane to the Euclidean plane . We actually think of this in terms of rigidly
 moving the hyperbolic plane under the focus , rather than the equivalent motion of the
 focus over the hyperplane plane . A change of focus to a new node , for example , is
 implemented by a translation in the hyperbolic plane that moves the selected node to
 the location that is mapped to the center of the disk . Thus , there is never a need to
 repeat the layout process . Rather , the original node positions are rigidly transformed
 and mapped to the Euclidean plane during display .

 To avoid loss of floating point precision across multiple transformations , we
 compose successive transformations into a single cumulative transformation which
 we then apply to the positions determined in the original layout . Furthermore , since
 we only need the mapped positions of the nodes that will be displayed , the
 transformation is only computed for nodes whose display size will be at least a screen
 pixel . This yields a constant bound on redisplay computation , no matter how many
 nodes are in the tree . The implementation of translation can be fairly ef ficient ,

 J . LAMPING AND R . RAO 42

 requiring about 20 floating point operations to translate a point and map it to the
 Euclidean plane , comparable to the cost of rendering a node on the screen .

 3 .4 . Node Information

 Another property of the Poincare ́ projection is that circles on the hyperbolic plane are
 mapped into circles on the Euclidean disk , though they will shrink in size the further
 they are from the origin . This can be used to identify screen space for displaying node
 information . We can compute a circle in the hyperbolic plane around each node that is
 guaranteed not to intersect with the circle of any other node . When those circles are
 mapped onto the unit disk they provide a circular display region for each node of the
 tree in which to display a representation of the node . The display regions can be used
 in conjunction with a facility that selects dif ferent representations for each node
 depending on the amount of space available . This could be used to implement a ‘zoom
 and bloom’ space similar to that of the Pad systems [1 , 14] .

 While the circle approach is very ef ficient , it does not make full use of the screen
 space because significant parts of the display are not covered by any circle , especially
 when nodes have many children . A somewhat more expensive technique that does a
 better job of identifying screen space for displaying node information notes is based
 on calculating , during layout , the midway points in hyperbolic space between a node ,
 its parent , its nearest siblings and one of its children . These points are then mapped to
 the display space , and used to identify an elliptical display region for the node
 (shown in Figure 8) . For convenience of the node display routines , the ellipses are

 Figure 8 . The regions available to nodes for displaying information

 THE HYPERBOLIC BROWSER 43

 Figure 9 . Long text mode with up to 25 characters displayed for each node that would normally display at
 least 2 characters

 always aligned with the axes and given a slight horizontal bias . This computation is
 not exact since it can lead to modest overlapping of display regions . However , it will
 typically be ef fective in practice because it provides more node inforation without
 interfering with understanding of the structure .

 Some applications can tolerate even greater amounts of overlap . For example , the
 browser supports a ‘long text’ mode in which all nodes beyond an allocated space
 threshold disregard their boundaries and display up to some maximum number of
 characters . Despite the overlapping of the text , this leads to more text being visible
 and discernible on the screen at once (see Figure 9) .

 4 . Preserving Orientation

 The use of hyperbolic space presented the challenging design problem of preserving a
 user’s sense of orientation . Dif ficulties arise on the hyperbolic plane because objects
 tend to get rotated as they are moved . For example , most nodes rotate on the display
 during a pure translation . There is a line that does not rotate , but the farther nodes are
 on the display from that line , the more they rotate . This can be seen in the series of
 frames in Figure 3 . The node labeled ‘Lowe’ , for example , whose children fan out to
 the upper right in the first frame , ends up with its children fanning out to the right
 in the last frame . These rotations are reasonably intuitive for translations to or from
 the origin . But if drags near the edge of the disk are interpreted as translations

 J . LAMPING AND R . RAO 44

 between the source and the destination of the drag , the display will do a
 counter-intuitive pirouette about the point being dragged .

 This ef fect is caused by a fundamental property of hyperbolic geometry . In the
 usual Euclidean plane , if some graphical object is dragged around , but not rotated ,
 then it always keeps its original orientation—not rotated . But this is not true in the
 hyperbolic plane . A series of translations forming a closed loop , each preserving the
 orientation along the line of translation , will , in general , cause a rotation . (In fact the
 amount of rotation is proportional to the area of the closed loop and is in the opposite
 direction in which the loop was traversed .) This leads to the counter-intuitive
 behaviour that a user who moves the focus around the hierarchy can experience a
 dif ferent orientation each time they revisit a node , even though all they did was
 translations .

 We address both of these problems by interpreting the user’s manipulation as a
 combination of both the most direct translation between the points the user specifies
 and an additional rotation around the point moved , so that the manipulations and
 their cumulative ef fects are more intuitive . The key is to use the additional rotation to
 establish some property that the user can easily understand . From the user’s
 perspective , drags and clicks move the point that the user is manipulating where they
 expect , while preserving some other intuitive property .

 We have found two promising properties for guiding the added rotations . In one
 approach , rotations are added so that the original root node always keeps its original
 orientation on the display . In particular , the edges leaving it always leave in their
 original directions . Preserving the orientation of the root node also means that the
 node currently in focus also has the orientation it had in the original image . The
 transformation in Figure 3 works this way . It seems to give an intuitive behaviour
 both for individual drags and for the cumulative ef fect of drags . In this approach , the
 user is typically not aware that rotation is being added .

 The other approach does not attempt to preserve node orientation . Instead , when a
 node is brought to the focus , the display is rotated to have its children fan out in a
 canonical direction e . g . to the right . This is illustrated in Figure 10 and also in the
 animation sequence in Figure 11 . This approach works best when the children of the
 root node are all laid out on one side , as also true in the two figures , so that the
 children of the root also fan out in the canonical direction when it is in focus .

 5 . Animated Transitions
 Animated transitions between dif ferent views of a structure maintain object constancy
 and help the user assimilate the changes across views . The smooth continuous nature
 of the hyperbolic plane allows for performing smooth transitions of focus by
 rendering appropriate intermediate views .

 Animation sequences are generated using the an ‘ n th-root’ of a transition
 transformation , i . e . the rigid transformation that applied n times will have the same
 ef fect as the original . Succesive applications of the ‘ n th-root’ generate the intermediate
 frames . The sequences in Figure 3 and Figure 11 were generated this way .

 Responsive display performance is crucial for animation and interactive dragging .
 This can be a problem for large hierarchies on standard hardware . We achieve quick
 redisplay by compromising display quality during motion . These compromises
 provide options for use in a system that automatically adjusts rendering quality

 THE HYPERBOLIC BROWSER 45

 Figure 10 . In right orientation mode , the children of the root are laid out only to its right , and the
 structure is rotated to display children of the focus node to its right

 (1) (3)

 (2) (4)

 Figure 11 . Animated transition with compromised rendering

 J . LAMPING AND R . RAO 46

 during animation , e . g . the Information Visualizer governor [16] or Pacers [23] .
 Fortunately , there are compromises that do not significantly af fect the sense of
 coherence . Figure 11 shows an animation sequence with the compromises active in the
 intermediate frames . Unless specifically looked for , the compromises typically go
 unnoticed during motion .

 One compromise is to draw less of the fringe . Even the full quality display routine
 stops drawing the fringe once it gets below one pixel resolution . For animation , the
 pruning can be strengthened so that descendants of nodes within some small border
 inside the edge of the disk are not drawn . This aggressively increases display
 performance since the vast majority of nodes are very close to the edge . But it does
 not significantly degrade perceptual quality for a moving display because those nodes
 occupy only a small fraction of the display and not the part that the user is typically
 focusing on .

 Another compromise is to draw lines , rather than arcs , which are expensive in the
 display environments we have been using . While arcs give a more pleasing and
 intuitive static display , they are not as important during animation . This appears to be
 true for two reasons . The dif ference between arcs and lines is not as apparent during
 motion . Furthermore , again particularly during motion , the user’s attention tends to
 be focused near the center of the display where the arcs are already almost straight .

 One other possible compromise is to drop text during animation . We found this to
 be a significant distraction , however , and text display has not been a performance
 bottleneck .

 6 . Implementation

 In this section , we present the details of the mathematics necessary to implement the
 hyperbolic browser . It is primarily of interest only to those interested in implement-
 ing our technique .

 Representations Our implementation relies on representation for the hyperbolic
 plane , rigid transformations of the plane and mappings from the plane to the unit
 disk . We represent a point in hyperbolic space by the corresponding point in the unit
 disk under the Poincare ́ mapping . Our representation thus directly encodes the
 mapping from the plane to the unit disk b . Points in the unit disk are represented as
 floating point complex numbers of magnitude less than 1 .

 Rigid transformations of the hyperbolic plane are represented by circle preserving
 transformations of the unit disk . Any such transformation can be expressed as a
 complex function of z of the form

 z t 5
 θ z 1 P
 1 1 P # θ z

 b On graphics hardware that has fast support for 3 3 3 matrix multiplication , it might be faster to use the
 Klein model for the representation of the hyperbolic plane , as done in [5] , because rigid transformation can
 then be expressed in terms of linear operations on homogeneous coordinates . Mapping to the display then
 requires computing the Poincare ́ mapping of points represented in the Klein model , which is just a matter
 of recomputing the distance from the origin according to r p 5 r k / (1 1 4 1 2 r 2

 k) .

 THE HYPERBOLIC BROWSER 47

 Where P and θ are complex numbers , u P u , 1 and u θ u 5 1 , and P # is the complex
 conjugate of P . This transformation indicates a rotation by θ around the origin
 followed by moving the origin to P (and 2 P to the origin) .

 Given a transformation , k P , θ l the inverse transformation (which is needed to map
 from display coordinates back into the hyperbolic plane) can be computed by :

 P 9 5 2 θ # P θ 9 5 θ #

 The composition of a transformation k P 1 , θ 1 l followed by k P 2 , θ 2 l , is given by :

 P 5
 θ 2 P 1 1 P 2

 θ 2 P 1 P # 2 1 1
 θ 5

 θ 1 θ 2 1 θ 1 P # 1 P 2

 θ 2 P 1 P # 2 1 1

 Due to round-of f error , the magnitude of the new θ may not be exactly 1 .
 Accumulated errors in the magnitude of θ can lead to large errors when transforming
 points near the edge , so we always normalize the new θ to a magnitude of 1 .

 Layout The layout routine is structured as a recursion that takes a node and a wedge
 in which to lay out the node and its children . It places the node at the vertex of the
 wedge , computes a wedge for each child and recursively calls itself on each child . The
 wedge is represented by the point at its vertex , the endpoint of its midline , and the
 angle from the midline to either edge of the wedge . The vertex and endpoint are
 represented by complex numbers . Since the endpoint is a point at infinity , its complex
 number has magnitude 1 . For convenience of calculations , the endpoint is represented
 relative to the vertex , in the sense that the representation corresponds to where the
 endpoint would end up if the vertex were shifted to the origin .

 The layout routine records the position of the wedge as the position of the node .
 Then , if there are children , a simple procedure is to divide the angle of the wedge by
 the number of children , n , and subdivide the wedge into n equal sized wedges , each
 spanning that angle . The slightly more complicated procedure actually used in the
 figures gives dif ferent children dif ferent fractions of the wedge depending logarithmi-
 cally on the number of children and grandchildren of each child .

 The children are placed in the middle of their subwedges at a distance computed by
 the formula

 d 5 – S (1 2 s 2) sin (a)
 2 s

 D 2

 1 1 2
 (1 2 s 2) sin (a)

 2 s

 where a is the angle between midline and edge of the subwedge and s is the desired
 distance between a child and the edge of its subwedge ; we typically use a value of
 about 0 ? 12 for s (the values used in Figure 6 are 0 ? 06 , 0 ? 12 and 0 ? 18 , respectively) . The
 result , d , is the necessary distance from parent to child . If the calculation of d results
 in a value less the s , we set d to s to maintain a minimum spacing between parent and
 child . Both s and d are represented as the hyperbolic tangent of the distance in the
 hyperbolic plane . This form facilitates later operations in the Poincare ́ map , because it
 has the convenient property that a line segment on the unit disk with one end on the
 origin and extending the given amount represents a segment extending the represented
 distance in the hyperbolic plane .

 Given a subwedge for a child and the distance , d , to the child , the next step is to
 calculate a wedge inside the subwedge , with its vertex at the child , to use for the

 J . LAMPING AND R . RAO 48

 recursive call . Given the vertex , p , midline endpoint , m , and angle , a , of the
 subwedge , the corresponding parameters of the contained wedge that results from
 moving d into the subwedge can be calculated using the transformation apparatus :

 p 9 5 Trans (dm , k p , 1 l)
 m 9 5 Trans (Trans (m , k p , 1 l) , k 2 p 9 , 1 l)
 a 9 5 im (log (Trans (e ia , k 2 d , 1 l)))

 where Trans is the transformation function described above , which takes a point and a
 transformation specification and returns the transformed point . The im (log (? ? ?)) in
 the formula for a 9 returns the angle corresponding to the complex number , doing the
 inverse of the conversion from angle to complex number done by the e ia (these
 functions can be implemented using cos , sin and arc tangent and a complex number
 constructors and selector instead) .

 Display Node display involves recursing on the node structure . Starting from the
 root , the procedure draws a node’s incoming link , recurses on its children , and finally
 draws the node . This procedure utilizes a ‘current transformation’ which maps from
 the hyperbolic plane to the unit disk positions according to the current focus . The
 coordinates for drawing links and nodes are obtained by transforming the recorded
 positions and spacings of nodes by the current transformation and scaling the
 resulting unit disk coordinates to the actual display window size .

 Links between nodes are drawn as arcs (corresponding to straight lines in the
 hyperbolic plane) to convey a sense of warping of the space and to preserve the angle
 near the node centers . The center of curvature of the arc that links two points
 represented by complex numbers a and b in the unit circle is given by

 d 5 re (a) im (b) 2 re (b) im (a)

 c 5
 i
 2

 (a (1 1 u b u 2) 2 b (1 1 u a u 2))
 d

 In addition , if the quantity d is positive , then the arc from a to b goes clockwise
 around the circle . Otherwise it goes counterclockwise .

 Interaction After layout , the recorded positions of the nodes are not changed ;
 instead a current transformation is maintained for use during display . Initially , the
 current transformation is set to the identity transformation , k 0 , 1 l . When the user
 clicks on a new position to be the focus , we compute a transformation that maps the
 indicated point on the hyperbolic plane to the origin . Similarly , when the user drags
 from one point to another , we compute a transformation that maps from the first
 indicated point to the second . In both cases , in orientation preserving mode , the
 orientation of the origin is preserved . The desired origin-preserving transformation
 can be calculated with :

 a 5 Trans (s , k 2 p , 1 l)

 b 5
 re ((e 2 a)(1 1 ae)) 1 im ((e 2 a)(1 2 ae)) i

 1 2 u ae u 2

 T 5 Compose (k 2 p , 1 l , k h , 1 l)

 where s is the starting point where the user first clicked , e is the endpoint point

 THE HYPERBOLIC BROWSER 49

 (either the origin or where the user ended their drag) , and p is the point whose
 orientation is to be preserved (we use the image of the origin under the current
 transformation) . Compose is transformation composition , defined earlier . T is the
 resulting transformation . This transformation is composed with the current transfor-
 mation to get the new current transformation .

 To provide a smooth animation between the current transformation and a new
 current transformation , a series of frames with transformations between the two are
 generated . Linear interpolation in disk coordinates can be used to compute the
 intermediate transformations , but we use a more sophisticated procedure involving
 calculation of the ‘ n th-root’ of the transition transformation between the current and
 new transformations . The computation of the nth root of a transformation , k P , θ l is
 somewhat involved , with three cases . Dif ferent formulas apply in the dif ferent cases
 but , in addition , some formulas are converted to equivalent forms to improve
 numerical stability . The procedure first computes :

 d 5 4 u P u 2 2 u θ 2 1 u 2

 Then depending on the value of d , one of following three intermediate computations
 is performed :

 if d . 0

 t 5
 4 d

 u θ 1 1 u

 r 5

 tanh S argtanh (t)
 n

 D
 t

 a 5 r 2 u θ 2 1 u 2

 u θ 1 1 u 2

 b 5 r — 1 1
 u θ 2 1 u 2

 u θ 1 1 u 2

 1 1 a
 if d 5 0

 a 5
 1
 n 2

 u θ 2 1 u 2

 u θ 1 1 u 2

 b 5
 1
 n
 — 1 1

 u θ 2 1 u 2

 u θ 1 1 u 2

 1 1 a
 if d , 0

 t 5
 4 2 d

 u θ 1 1 u

 a 5

 tan 2 S arctan (t)
 n

 D u θ 2 1 u 2

 2 d

 b 5
 1

 u θ 2 1 u – 4 a
 (1 1 a)

 J . LAMPING AND R . RAO 50

 Finally , a transformation is calculated :

 m 5 if im (θ) . 0 then 1 else 2 1

 θ 9 5
 1 2 a
 1 1 a

 1
 2 m 4 a
 1 1 a

 i

 P 9 5 Pb 4 θ 9 / θ

 7 . Mappings for Dual Focus and Stretch Factor

 While the Poincare ́ mapping is our basis for getting from the hyperbolic plane to the
 Euclidean plane , variations are sometimes useful . If we start with the Poincare ́
 mapping to get to the Euclidean plane and then apply any conformal (angle
 preserving) mapping to the Euclidean plane , the composition will still have the
 advantages of being a conformal mapping from the hyperbolic plane to the Euclidean
 plane . But , it can have some properties that the Poincare ́ map lacks .

 One useful mapping is a dual focus mapping , as shown in Figure 12 , where there
 are two foci , one for each of two dif ferent points on the hyperbolic plane . We achieve
 this mapping by applying the transformation

 z 9 5 z
 a 2 2 1

 a 2 z 2 2 1

 Figure 12 . A dual focus mapping allows examining contexts of distant parts of the hierarchy

 THE HYPERBOLIC BROWSER 51

 to the unit disk , represented as complex numbers . The result is that the points that
 would have mapped to a and 2 a now become the two foci . If a is small , the display is
 elongated slightly , while if it is close to 1 , the display looks more like a binocular
 view .

 One use of the dual focus mapping is to put a node and one of its ancestors at the
 two foci to better visualize their relationship , as done in Figure 12 . This is done by
 first finding a circular mapping that puts those nodes an equal distance from the
 center , on either side , and then applying the dual focus mapping . A more prosaic use
 of the dual focus is to change the aspect ratio of the visualization (by up to about
 50%) to better fit a window , while keeping a conformal mapping .

 Another variant mapping is deliberately non-conformal . As mentioned above , there
 is a layout parameter for how close together to place sibling nodes (as shown in
 Figure 6) . Often , a user might want to alter this parameter interactively so as to put
 more or fewer nodes in the focus region . Fortunately , a non-conformal
 circumference-reducing transformation can achieve almost the same ef fect without
 having to redo the layout . Figure 13 shows a side-by-side comparison of shrinking the
 sibling spacing in the layout by 50% and doing a 50% circumference reduction .

 The idea is to move nodes radially further from or closer to the root node in the
 hyperbolic plane . The transformation we use adjusts the radial distance so that the
 circumference at that new distance is some ratio of the circumference at the original
 distance . If positions in the hyperbolic plane are represented by their Poincare ́ map
 with the root centered , then the new radial distance , d 9 , is related to the old distance ,
 d , by

 s
 d

 d 2 2 1
 5

 d 9

 d 9 2 2 1

 where s is the scaling factor . This has approximately the same ef fect as a new layout
 with the spacing between siblings being adjusted by the same ratio .

 Figure 13 . Using layout-time parameter for sibling spacing (left) vs . a display-time non-conformal
 circumference reduction mapping (right)

 J . LAMPING AND R . RAO 52

 8 . Visualizing Graphs
 A natural question is whether the hyperbolic browser can be extended to visualize
 structures other than trees , for example , more general graph structures . The properties
 of the hyperbolic plane exploited for hierarchy layout apply similarly to laying out
 general graph structures : its spaciousness overcomes the metric problem of laying out
 structures in Euclidean space (i . e . the space is too confined) . However , laying out
 general graph structures also presents a topological problem : dealing with crossing
 links . Since the hyperbolic plane has the same topological structure as the Euclidean
 plane , it does not overcome this problem .

 The spaciousness of the hyperbolic plane does , however , allow a finesse that would
 be more dif ficult using conventional layout techniques . This approach involves
 converting a graph to a tree and then using the hyperbolic browser to visualize the
 resulting tree . This approach can be quite ef fective when the graphs are ‘almost’ trees .
 For example , a directory structure may be a tree , except for some symbolic links that
 introduce non tree-like links . Similarly , the links in a World Wide Web structure are
 often mostly tree-like , with additional cross-references .

 We convert a graph as a tree by making a copy of each graph node for each
 incoming edge so that each edge goes to its own copy . Then one copy of a node is
 chosen as the main one , for example , the one (or the one of several) closest to the
 root . The children of a node are attached only to the main copy . This transformation
 is straightforwardly implemented using a breadth-first traversal of the graph . When

 Figure 14 . The link structure of the Xerox WWW Server shown as a tree . The X represents the Xerox
 home page and its children represent the pages pointed to by that page , and so on

 THE HYPERBOLIC BROWSER 53

 the tree is displayed , the nodes that are copies can be visually distinguished . For
 example , the link structure of documents served by the Xerox WWW server starting
 from its root document is shown in this manner in Figure 14 . The repeated nodes are
 shown with blue backgrounds .

 This presents the problem of finding the children of repeated nodes . One solution is
 to maintain the original layout and provide a mechanism for automatically navigating
 to the main copy . So , for example , when one of the repeated nodes is selected by the
 user , an animated transition can move the main copy of the node into focus so that its
 descendants are visible . Understanding of the transition can be facilitated by using a
 path through the nearest common ancestor at a pace controlled by the length of the
 path .

 An alternative approach for turning a graph into a tree gives all node repeats a copy
 of the descendent hierarchy ; thus , all node repeats are equally valid . This expands the
 graph out into a (possibly infinite) tree , with one tree node for each rooted path in
 the graph . Since layout can be done locally on the hyperbolic plane and thus
 incrementally , the entire logical structure need not be laid out initially . Rather only
 the part of the structure visible at pixel resolution needs to be laid out , with additional
 layout done as the user moves the focus . For ef ficiency , only one set of descendant
 hierarchy needs to be maintained since transformations can be calculated which map
 each unique descendant hierarchy (i . e . one per graph node) to each of its locations .
 This is possible because of the roominess of the hyperbolic plane and the associated
 viability of using uniform layout at all locations .

 9 . Conclusion
 We believe that the hyperbolic browser of fers a promising new addition to the suite of
 available focus 1 context techniques . Hyperbolic geometry provides an elegant
 solution to the problem of visualizing large hierarchies . The hyperbolic plane has the
 room to layout large hierarchies , and the Poincare ́ map provides a natural ,
 continuously graded , fisheye mapping from the hyperbolic plane to a display . The
 hyperbolic browser can handle arbitrarily large hierarchies with a context that
 includes as many nodes as are included by 3D approaches and with modest
 computational requirements .

 A preliminary experimental study , described in [9] , though inconclusive , did
 ascertain that all of its four subjects preferred the hyperbolic browser over a
 conventional browser in both ‘getting a sense of the overall tree structure’ and ‘finding
 specific nodes by their titles’ , as well as ‘overall’ . Three of the subjects liked the ability
 to see more of the nodes at once and two mentioned the ability to see various
 structural properties and a better use of the space .

 We have developed and explored a number of enhancements and variations of the
 core hyperbolic browser that address common needs . The alternative mappings for
 dual focus and interactive focus stretching , respectively , provide mechanisms for
 examining distal parts of hierarchy simultaneously and for controlling the tradeof f
 between the number of nodes visible and the amount of space available for displaying
 node information . Our initial work on graph visualization suggests that the
 hyperbolic browser can be applied to graphs of the kind common in many
 applications .

 J . LAMPING AND R . RAO 54

 Many of the conventional techniques of information visualization would increase
 the value of the hyperbolic browser for navigating and learning hierarchies . For
 example , landmarks can be created in the space by utilizing color and other graphical
 elements (e . g . the prominent red X Xerox logo is an ef fective root marker) . Other
 possibilities include providing a visual indication of where there are nodes that are
 invisible because of the resolution limit , using line thickness to convey depth or other
 information , and using a ladder of multiscale graphical representations in node display
 regions as done in ‘zoom and bloom’ interfaces . The ef fective use of these types of
 variations are likely to be application or task dependent and thus best explored in such
 a design context .

 Acknowledgements

 The focused work described here would not have ever materialized except for the rich
 context of information visualization work at PARC as initiated by Stuart Card , Jock
 Mackinlay and George Robertson . A number of other colleagues have made valuable
 suggestions during the development of our prototypes . We would particularly like to
 thank Peter Pirolli for his collaboration on the experimental study described in a
 previous paper . We are also grateful for Barbara Gable’s assistance in developing
 datasets and in obtaining copyright clearances for the Escher figure . The reviewers of
 this paper and its ancestors have steadily improved its quality . Xerox Corporation is
 seeking patent protection for technology described in this paper .

 References

 1 . B . B . Bederson & J . D . Hollan (1994) Pad 11 : A zooming graphical interface for exploring
 alternate interface physics . In : Proceedings UIST ’ 9 4 ACM Press , New York , pp . 17 – 26 .

 2 . J . Bertini (1983) Semiology of Graphics University of Wisconsin Press , Wisconsin .
 3 . H . S . M . Coxeter (1965) Non - Euclidean Geometry University of Toronto Press , Toronto .
 4 . G . W . Furnas (1986) Generalized fisheye views . In : Proceedings of the ACM SIGCHI

 Conference on Human Factors in Computing Systems Addison-Wesley , Reading , MA , pp .
 16 – 23 .

 5 . C . Gunn (1991) Visualizing hyperbolic space . In : Computer Graphics and Mathematics
 Springer-Verlag , Berlin , pp . 299 – 31 .

 6 . Don Hopkins (1989) The shape of psiber space . http : / / hello . kaleida . com / u / hopkins /
 psiber / psiber : html , 1989 .

 7 . B . Johnson & B . Shnedierman (1991) Tree-maps : A space-filling approach to the
 visualization of hierarchical information . In : Proceedings of Visualization 1 9 9 1 . IEEE
 Society Press , Los Alamitos , CA , pp . 284 – 291 .

 9 . J . Lamping , R . Rao & P . Pirolli (1995) A focus 1 context technique based on hyperbolic
 geometry for visualizing large hierarchies . In : Proceedings of the ACM SIGCHI Con-
 ference on Human Factors in Computing Systems Addison-Wesley , Reading , MA .

 10 . Y . K . Leung & M . D . Apperley (1994) A review and taxonomy of distortion-oriented
 presentation techniques . ACM Transactions on Computer - Human Interaction 1 , 126 – 160 .

 11 . J . D . Mackinlay , G . G . Robertson & S . K . Card (1991) The perspective wall : Detail and
 context smoothly integrated . In : Proceedings of the ACM SIGCHI Conference on Human
 Factors in Computing Systems Addison-Wesley , Reading , MA . pp . 173 – 179 .

 12 . J . Mackinlay , G . Robertson & R . Deline (1994) . Developing calendar visualizers for the
 information visualizer . In : Proceedings of the ACM Symposium on User Interface Software
 and Technology ACM Press , New York , pp . 109 – 118 .

 13 . E . E . Moise (1974) Elementary Geometry from an Advanced Standpoint Addison-Wesley ,
 New York .

 THE HYPERBOLIC BROWSER 55

 14 . K . Perlin & D . Fox (1993) Pad : An alternative approach to the computer interface . In :
 Proceedings SIGGRAPH ’ 9 3 Addison-Wesley , Reading MA , pp . 57 – 64 .

 15 . R . Rao & S . K . Card (1994) The table lens : Merging graphical and symbolic representation
 in an interactive focus 1 context visualization for tabular information . In : Proceedings of the
 ACM SIGCHI Conference on Human Factors in Computing Systems Addison-Wesley ,
 Reading , MA , pp . 318 – 322 and 481 – 482 .

 16 . G . G . Robertson , S . K . Card & J . D . Mackinlay (1989) The cognitive coprocessor
 architecture for interactive user interfaces . In : Proceedings of the ACM SIGGRAHP
 Symposium on User Interface Software and Technology ACM Press , New York , pp . 10 – 18 .

 17 . G . G . Robertson , S . K . Card & J . D . Mackinlay (1993) Information visualization using 3d
 interactive animation . Communications of the ACM 36 , 56 – 71 .

 18 . G . G . Robertson , J . D . Mackinlay & S . K . Card (1991) Cone trees : Animated 3d
 visualizations of hierarchical information . In : Proceedings of the ACM SIGCHI Conference
 on Human Factors in Computing Systems Addison-Wesley , Reading , MA , pp . 189 – 194 .

 19 . G . G . Robertson & J . D . Mackinlay (1993) The document lens . In : Proceedings of the ACM
 Symposium on User Interface Software and Technology ACM Press , New York , pp .
 101 – 108 .

 20 . M . Sarkar & M . H . Brown . Graphical fisheye views of graphs . In : Proceedings of the ACM
 SIGCHI Conferences on Human Factors in Computing Systems Addison-Wesley , Reading ,
 MA , pp . 83 – 91 .

 21 . M . Sarkar & M . H . Brown (1994) Graphical fisheye views . Communications of the ACM
 37 , 73 – 84 .

 22 . M . Sarkar , S . Snibbe & S . Reiss (1993) Stretching the rubber sheet : A metaphor for
 visualizing large structure on small screen . In : Proceedings of the ACM Symposium on User
 Interface Software and Technology ACM Press , New York , pp . 81 – 92 .

 23 . S . H . Tang & M . A . Linton (1993) Pacers : Time-elastic objects . In : Proceedings of the ACM
 Symposium on User Interface Software and Technology ACM Press , New York , pp . 35 – 44 .

