
1

The Security Architecture of qmail

Munawar Hafiz, Ralph E Johnson, Raja Afandi
University of Illinois at Urbana-Champaign, Department of Computer Science

{mhafiz, rjohnson, afandi}@uiuc.edu

Abstract

The architecture of qmail was carefully designed to
overcome the security problems of sendmail.
However, qmail is not only more secure than
sendmail, it is also more efficient and easier to
understand. Thus, the architecture is able to
accomplish several goals at once. The security of
qmail is based on a few patterns, and understanding
its architecture can help us make other applications
secure.

1. Introduction

Daniel Bernstein designed qmail as a replacement
for sendmail with improved security[DB97]. The
security of qmail is the result of a set of architectural
decisions. The same architecture that makes it secure
also makes it more efficient than sendmail and easy to
understand and maintain. This paper describes the
design of qmail by treating it as a sequence of
decisions. [CP93] Many of the design decisions are
examples of security patterns. Thus, this paper is
another example of how patterns generate architecture.
[BJ94]

Security is the main driving force behind the
architecture of qmail. qmail is a mail transfer agent
(MTA), a computer program that transfers electronic
mail messages from one computer to another. An
MTA must keep email secure against casual attacks,
and must not allow attackers to break into the system.
The system must fail securely and should be
recoverable to its original state, and it must also be
able to track the cause of a security breach.

An MTA must be reliable. It must never lose a
message.

An MTA must be efficient in both time and space,
because it might process thousands of messages
simultaneously.

An MTA must be available. It must be able to cope
with denial of service attacks. In case of unavailability,
the system must be able to resume from the original
state.

An MTA must support existing mail transfer
protocols, but it should be extensible so that it can
incorporate future protocols.

Although sendmail’s architecture was not
considered a problem when it was created, qmail’s
architecture is clearly superior. sendmail was the
program that made SMTP popular, and is still the
most widely used MTA. Its security problems are no
worse than many other widely used systems, but qmail
has had no security defects detected since the release of
qmail 1.0 in 1997. Similarly, sendmail is efficient
enough for many organizations running large mailing
lists, but qmail takes less memory and has several
times the throughput of sendmail. Moreover, qmail is
smaller, simpler, and easy to extend.

The architecture of qmail comes from a few simple
patterns. These patterns are not new for qmail, but
qmail is an example of how to use them effectively.
One of the key principles of qmail’s architecture is
Defense in Depth [VM02], which means that qmail
does not depend on any single idea to achieve security,
but has several layers of security. First, the way it is
divided into modules tends to decrease the damage
caused by security breakins, and ensures that many
kinds of errors are not possible. The module
decomposition also makes each module simpler, so it
can be inspected for correctness. It makes
multiprocessing more efficient. The way that qmail
uses the file system makes queing and delivering the
mail more reliable. The low-level coding patterns
eliminate important classes of errors such as buffer
overflows. The result is an MTA architecture that is
much superior to that of sendmail. Studying the
architecture of qmail can help us to make other
systems secure, effeicient, and easy to understand.

2. Mail Transfer Agent

A mail transfer agent or MTA (also commonly
called a ‘mail server’) is a computer program that
transfers electronic mail messages from one computer
to another. The MTA works behind the scenes, while
the user usually interacts with another program, the
mail user agent (MUA), which uses the MTA to

2

deliver the mail. The most popular mail transfer
protocol for MTAs is SMTP. The most popular MTA
is sendmail. Other Unix compatible and SMTP
compatible MTAs are qmail, Postfix, Exim, Courier
and ZMailer.

An MTA will accept mail from a local user and
deliver it either locally or by using SMTP to transfer it
to another MTA. It must also accept e-mail from
another MTA for local delivery or to relay to a third
MTA. Thus, an MTA has at least two ways to accept
input and two ways to handle output, as shown in
Figure 1, the context diagram of a leveled Data Flow
Diagram (DFD).

.

Figure 1: An Operational MTA

3. The mail queue

The structure of an MTA follows its context
closely. There will be a process that handles messages
from a MUA (which in qmail is qmail-inject), a
process that handles messages from another MTA
(qmail-smptd), a process that sends mail to a local user
(qmail-local), and a process that sends mail to a remote
user (qmail-remote). However, figure 1 does not
indicate the need for a mail queue, which turns out to
have a big impact on the design of qmail.

Post offices do not deliver mail as soon as it is
dropped in the mailbox. They collect outgoing mail
and process it periodically. An MTA does the same. It
cannot always deliver mail immediately because the
destination MTA might be disconnected from the
internet, or might not be working. Often an MTA has
a large number of messages to send at once, and it can
take a long time to deliver them. It stores outgoing
messages in a mail queue until they are delivered. An
MTA without a mail queue will lose messages if its
host fails before the messages are delivered.

It would be possible to design an MTA to have a
single process for the mail queue. However, qmail has
two processes, qmail-queue and qmail-send. The first
is responsible for placing mail in the queue, and the
second is responsible for taking it out of the queue and
sending it. This leads to the design of figure 2.

4. Security problems

A variety of security problems have plagued
sendmail. One of the most common targets of attack is

the SMTP server, since it is the main interface to users
outside the host. Even though Figure 2 might make it
seem that an MTA is a collection of independent
processes, sendmail implements them all with a single
Unix program. The “processes” share an address space.
This makes communication between the processes
efficient, but means that once someone breaks into the
SMTP server, they have all the powers of sendmail.

One solution is to put the SMTP server in a
separate address space from the rest of the MTA. Even
if attackers discover a buffer overrun in the SMTP
server, they can do little damage to qmail, because
qmail-smtpd does nothing except call qmail-queue and
give it a messages to put on the mail queue. It does
not write on any files except a log file. This limits
the extent of an error in the SMTP server of qmail.
Moreover, the SMTP server is small and it is easy to
read it and verify that it doesn’t write to any file except
the log file.

Separting the SMTP server from the rest of the
MTA is an obvious way to improve security. This
was also done in a redesign of sendmail by Zhong and
Edwards[ZE98] and in Postfix[].

This is an example of the first security pattern,
compartmentalization. The name comes from Viega
and McGraw [VM02], but the pattern has been
described by many people, such as the Execution
Domain pattern by Fernandez [F02].

.
Security Pattern: Compartmentalization [VM02]

Problem
A security failure in one part of a system allows
another part of the system to be exploited.

Solution
Put each part in a separate security domain. Even when
the security of one part is compromised, the other parts
remain secure.

5. Distributed delegation

Another problem with sendmail is that it runs as
super-user. A MTA needs to write in the directory of a
local user to deliver mail. Either the MTA must run
as the user or it must run as the superuser. sendmail
runs as a single super-user process. When it writes a
file, it checks to make sure that it is not abusing its
priviledges. A number of the sendmail errors resulted
from not making sufficient checks.

Because qmail runs as many processes, the process
that delivers local mail (qmail-local) runs as the user
receiving the mail. Most of the other processes run as
qmail specific user IDs and so cannot write on either

3

user files or system files. The qmail-smtpd process
runs with uid “qmaild” while qmail-queue runs with
uid “qmailq” and qmail-send runs with uid “qmails”.
This means that it is impossible for the SMTP server
to write on the mail queue or on user files, even if
attackers can completely change its program. The
worst they can do is to have it generate bad messages
to qmail-queue. Similarly, qmail-send is not able to
add or remove messages from the mail queue. It can

only read them and mark them as sent. No other part
of qmail can even read them, much less modify them.

qmail ensures that local mail delivery is secure by
breaking it into two processes, qmail-lspawn and
qmail-local. qmail-lspawn runs as the super-user, but
is short (less than 500 lines) and simple. First it looks
up the target user to find the uid, then it runs qmail-
local after becoming that user. It does not write any
files, nor does it read any files once it decides on its
new uid.

Figure 2: An MTA with a mail queue

Security Pattern: Distributed Responsibility

Problem
A security failure in a compartment can change any
data in that compartment. A compartment has both
an interface that is at risk of a security failure and
data that needs to be secure.

Solution
Partition responsibility across compartments such
that compartments that are likely to fail do not have
data that needs to be secure. Assign responsibilities
in such a way that several of them need to fail in
order for the system as a whole to fail.

This is called Distributed Delegation by Varyard and
Ward. [VW01]

Following are the qmail programs and their
corresponding user groups:

• qmail-smtpd run as qmaild

• qmail-rspawn and qmail-remote run as
qmailr
• qmail-send run as qmails
• qmail-queue and qmail-clean run as qmailq
• qmail-start and qmail-lspawn are the only
programs that run as root .

6. Interfaces

The most common way for a Unix programmer to
interpret a flow between two DFD processes is as a
pipe between two Unix processes. Almost none of
the flows in Figure 3 should be interpreted in this
way. The interfaces to most of the qmail programs
are idiosyncratic and do not follow Unix standards.

For example, qmail-lspawn, qmail-rspawn and
qmail-clean both take one input pipe and one output
pipe, but both of them go to qmail-send. qmail-send
uses one pipe to send commands to lspawn or
rspawn, and the other to read the result. qmail-send
thus has two pipes each to communicate with
lspawn, rspawn and qmail-clean. The pipes are used
like a remote procedure call mechanism, except that

4

results are not returned in the same order that
commands are given. Every time qmail-send issues a
command, lspawn or rspawn will spawn a new
process, and each process returns a result when it is
finished. Since some processes are faster than others,
results return in a different order than their
commands.

A less strange example is given by qmail-queue.
It takes two input streams. File descriptor 0
(normally standard input) is the message, while file
descriptor 1 (normally standard output) is the
envelope for the message. The envelope describes the
sender’s address and the recipients’ addresses. qmail-
queue reads the message and the envelope and uses
them to create an entry in the mail queue. It
communicates back to the program that invoked it
only by its exit code.

The only core qmail process with a normal Unix
interface is qmail-inject, which reads a message on its
standard input. It is also the only process that would
be called by a Unix program that is not part of qmail,

so it is good that its interface is natural for Unix
application programmers.

qmail-inject runs with the uid of the process that
invokes it. It invokes qmail-queue, but qmail-queue
must be able to write in the mail queue. So, qmail-
queue changes its uid to be “qmailq”, which is the
owner of the mail queue. It does this because its
“suid” bit is set in the file system. It can be
dangerous to allow a program to change its uid, but
it is safe in this case because the qmailq user is not
powerful, and is able only to add and remove
messages from the mail queue.

A common reason to make something a separate
Unix process is reuse. Because most Unix processes
have similar interfaces, they can be used as
components in shell scripts. But the purpose of
using separate processes in qmail is first
compartmentalization and second multithreading.
Reuse is not a purpose at all, as is proven by the
idiosyncratic interfaces.

Figure 3: Major qmail processes

5

7. Reliable Mail Queuing

 The mail queue is in the center of qmail. The
reliability of qmail depends on the mail queue being
reliable. Mail is placed in the mail queue only by
qmail-queue. However, qmail-queue isn’t a Unix
process, but rather a Unix program that can be called
simultaneously by many processes. For example, it
can be called by the MUA (when it calls qmail-inect)
and by qmail-smtpd at the same time. Thus, it is
important that several messages can be placed in the
mail queue simultaneously. Mail delivery is
sometimes interrupted and often takes a long time.
Remote MTAs can die in the process of receiving
mail.

The key to ensuring that one qmail-inject process
does not interfere with another is for each to give
each message a unique name for its file in the mail
queue directory. Each file represents a message, so
this is the same as assigning a unique ID to each
message. This is difficult to do efficiently and
portably on Unix. Ideally, qmail could use an ID
created automatically by Unix, but none of the
standard Unix IDs are perfect. Each process has a
unique process ID, but a process ID is unique only as
long as the process is running. Messages can last
long enough for process IDs to be recycled. Once a
file is created, its i-node number could be used as a
unique ID, but this only works after it is created. So,
qmail first uses the ID of the process that created the
message as the message ID, but then changes the
message ID to be the i-node number of the file. This
solution is portable and efficient. Its only drawback
is that it is not as simple as if a message had only
one ID over its life.

This is an example of the pattern of ensuring non-
interference of processes by unique entry of
information.

Reliability Pattern: Unique Entry of Information

Problem
Many proesses need to add information to a database
concurrently. How do we ensure that multiple write
operations are handled correctly and even if there is a
crash no trace is left of the failure?

Solution
Create unique entries for each write request. Thus,
different processes are never writing on the same file
at the same time.

The key to ensuring that messages are not lost is
to keep track of the various states of a message. In
particular, a message is created by writing the
message in one directory and the envelope in another.
The message is scheduled by a program that reads it
and decides what should be done with it. If a
message is to be delivered locally, its local envelope
recipient addresses are written into the mail queue,
but if it is to be delivered remotely then its remote
envelope recipient addresses are written. Each address
is first marked “NOT DONE”. Once the message is
delivered to the address, the address is marked
“DONE”. Once all the addresses for a message are
marked “DONE”, the message has been delivered and
so is removed.

qmail's mail queue consists of several directories.
qmail-queue creates a message in the “pid” directory
with its name being the ID of the process that created
it. Then the message is moved to the “mess”
directory and its name is changed to the message’s i-
node number. The envelope for the message is created
in the “intd” directory, and when it is finished a link
to the envelope is placed in the “todo” directory. At
this point, the message is officially in the mail
queue.

qmail-send takes messages out of the mail queue
and sends them to local and remote destinations. It
creates files in the “info”, “local” and “remote”
directories, all named after the i-node number of the
message in the “mess” directory. The file in the local
directory contains all the local destinations for the
message, while the file in the remote directory
contains all the remote destinations.

Cleanups are not necessary if the computer crashes
while qmail-send is delivering a message. At worst a
message may be delivered twice. There is no way for
a distributed mail system to eliminate the possibility
of duplication. What if an SMTP connection is
broken just before the server acknowledges successful
receipt of the message? The client must assume the
worst and send the message again. Similarly, if the
computer crashes just before qmail-send marks a
message as DONE, the new qmail-send must assume
the worst and send the message again. This
redundancy is not harmful in any way, but it is very
crucial in ensuring the reliability of the whole
system.

6

Reliability Pattern: Recoverable Component
[BB02]

Problem
How to structure a component so that its state can be
recovered and restored in case the component fails?

Solution

Use a wide variety of configurations that provide the
ability to “restart” the system from a known valid
state, either on the same platform or different
platforms.

Reliability Pattern: Checkpointed System [BB02]

Problem
Can we structure a system that can be “rolled back”
to a known valid state when its state becomes
corrupt?

Solution
Create a set of states and make the system follow the
state sequences in its life cycle. Keep state
information all the time.

Reliability Pattern: Hot Standby [BB02]

Problem
Can we structure a system which permits state
updates to originate from multiple components,
preserves the state of the overall system and of each
transaction in the face of failures, and guards against
loss of integrity due to incomplete application of
transactions or changes?

Solution
Monitor the transactions between different states.
Transfer from one state to another must be atomic.

8. Multi-threading

Delivering mail using SMTP can take a long
time. It takes only a fraction of a second to send a
short message to a lightly loaded MTA. However, it
can take a long time to send a long message to an
MTA on a slow network, and it takes several seconds
to decide that an MTA is not available. Therefore, an
MTA will be multithreaded so it can send many

messages at once and not allow unavailable MTAs to
block delivery of mail to available ones.

qmail has a small amount of multithreading just
because qmail-smtpd and qmail-send run as separate
processes. Moreover, qmail-lspawn and qmail-
rspawn also run as separate processes. However,
most of the concurrency in qmail comes from the fact
that qmail-rspawn will repeatedly run qmail-remote.
There can be hundreds or thousands of copies of
qmail-remote running, most of them waiting for a
response from a remote MTA. It is important that
these processes not take much memory, because the
number of processes is limited by the memory they
take. qmail-remote is small, so it takes little
memory, and it is easy to run many copies. This is
one of the reasons why qmail has high performance
on small machines.

Performance Pattern: Small Processes

Problem
A program memory processes can be limited by the
memory used by the processes. If the processes grow
unbounded, then there is a potential DoS scenario.
How can a program with many processes be made
safe from resource exhaustion?

Solution
Make the processes small. Each process should
perform one task. This will ensure that processes
allocate limited memory.

9. Mailbox management

Mailboxes have similar reliability problems as
mail queues. It is difficult to modify existing files
reliably, portably, and efficiently under Unix. NFS
has better control over ensuring atomixity for new
file creation than it does for writing to an existing
file. So, qmail provided a new mailbox format that
is easier to implement reliably under Unix.

The most popular mailbox format used by
sendmail and other MTAs is ‘mailbox’ or ‘mbox’.
This format uses a single file for all mail received by
a user, both old and new. The problem with mbox
format is that a crash can truncate the message. Even
worse, the truncated message will be joined to the
next message.

Another problem with mbox is that there may be
two programs simultaneously delivering mail to the
same user. The ‘mbox’ format requires the programs
to update a single central file. If the programs do not
use some locking mechanism, the central file will be
corrupted. Sun's Network File System (NFS), which
is typically used in this regard, does not work

7

reliably. There are other Unix locking mechanisms
that do, though they are not as widely available.

The solution to the ‘mbox’ format and the
problems related to it is the ‘maildir’ format in
qmail. This format is now used by other MTAs
including Postfix, exim, Courier and Mac OS X
Mail Application with the RCI mail server.

A ‘maildir’ is a structured directory that holds e-
mail messages. qmail’s ‘maildir’s are a simple data
structure, nothing more than a single collection of e-
mail messages. A directory in ‘maildir’ format has
three subdirectories, all on the same filesystem. The
subdirectories are named tmp, new, and cur.

Each file in new is a newly delivered mail
message. The modification time of the file is the
delivery date of the message. Files in cur are like
files in new except that they have been seen by the
user's mail-reading program. The tmp directory is
used to ensure reliable delivery, using the following
six steps.

1) chdir() to the ‘maildir’ directory.
2) stat() the name tmp/time.pid.host, where time

is the number of seconds since the beginning of 1970
GMT, pid is the program's process ID, and host is
the host name.

3) if stat() returned anything other than ENOENT,
the program sleeps for two seconds, updates time,
and tries the stat() again, a limited number of times.

4) create a file tmp/time.pid.host.
5) NSF-write the message to the file.
6) link()’s the file to new/time.pid.host.
After step 6, the message has been successfully

delivered. The delivery program is required to start a
24-hour timer before step 4, and to abort the delivery
if the timer expires. Upon error, timeout, or normal
completion, the delivery program may attempt to
unlink() tmp/time.pid.host.

NFS-writing in step five means
(1) check the number of bytes returned from

each write() call
(2) call fsync() and check its return value
(3) call close() and check its return value

10. Flexibility

Although SMTP is the most common mail
transfer protocol, it is not the only one. qmail
supports two other mail transfer protocols, QMTP
and QMQP, which are faster than SMTP. For each
protocol, there will be a server that runs along with
qmail-smtpd to deliver mail to qmail-queue. Thus, it
is easy to configure qmail to support other mail
transfer protocols. None of the qmail input programs
must be changed. Instead, a new server is written and
only the configuration files must be changed.

In contrast, a new protocol requires changing
qmail-remote, because it has to decide which protocol
to use.

11. Coding standards

There are a variety of coding standards followed
in qmail that reduce the likelihood of security
problems. It does not use the standard Unix I/O
libraries, but instead implements all of the libraries
that it uses. This eliminates the chance that a
defective library could introduce an error.

For example, the string library in C uses null
termination to identify the end of a string. As such,
a string function like strcpy blindly copies all
characters starting at the address of the source string
into the destination until it finds a null. This opens
up to potential buffer-overflow attacks like
“Smashing the stack” or “Overrun screw”. A way to
avoid this problem is to dynamically allocate strings.
However, that approach is vulnerable to DoS attacks.

The string library, rewritten in qmail, eliminates
buffer overruns. qmail strings are not null-terminated.
They are encapsulated in a struct type data structure
(stralloc) along with information about the length.
The structure has three fields.

typedef struct stralloc
 {
 char *s;
 unsigned int len;

 unsigned int a;
 }
s is a pointer to the string or 0 if it is not

allocated. len is the number of bytes in the string, if
it is allocated. a is the count of allocated bytes for the
string. An unallocated stralloc variable is initialized
to {0}.

The string copy routines are re-written as
stralloc_copy, stralloc_cat, stralloc_append etc. They
use the underlying routines stralloc_ready and
stralloc_readyplus for dynamic memory allocation.
stralloc_ready(stralloc* sa, int len) makes sure sa has
enough memory allocated for len characters.
stralloc_readyplus(stralloc* sa, int len) makes sure
that sa has enough space allocated for len characters
more than its current length. This defensive
mechanism makes the string copy function safe.

Handling string functions at this level creates the
last line of defense of security. This is an instance of
Defense in Depth.

In a language with garbage collection and bounds
checking like JAVA and Smalltalk, string copy does
not pose a problem. String carrying information
about its length and memory allocation is needed in
C because of the underlying mechanism of the

8

compiler. This is an instance of the Safe Data
Structure pattern.

Security Pattern: Safe Data Structure

Problem
Buffer overflow is a security threat that occurs from
bad programming practice. If every string handling
routine checked allocated memory and validated input
beforehand, buffer overflow would not occur.
However, in practice, they are not written to be safe.
How can string routines be made safe from buffer
overflow attacks?

Solution
Represent strings with data structure that includes
length information and allocated memory
information. All string routines should check for
length and memory available before proceeding.

 12. Content-independent processing

Some security breaches are caused by maliciously
used features. In November 1988, a worm was
released in the Internet to launch a DoS attack against
the infected. One of the loopholes that the worm
abused was the debug function of the sendmail
program [ER89]. sendmail has a feature to send mails
to a program, such that the program receiving the
mail executes with the body of the mail message as
input. This feature is not generally allowed for
incoming connections except when the debugging
mode is on. Unfortunately, the sendmail program
packaged with 4.3BSD and pre-4.1 versions of
SunOS had this mode turned on by default. The
worm used this feature to connect to a sendmail
daemon and send a message to a recipient that
includes command to strip off the headers and pass
the remainder of the message to a shell. The body of
the message consisted of a bootstrap shell script that,
when executed, would connect back to the attacking
machine via TCP and downloaded pre-compiled
object code replication of the worm. It then tried to
link the target code and execute it at which point the
new machine gets infected.

sendmail treats programs and files as addresses.
The situation is aggravated because sendmail runs as
root. sendmail tries to prevent this by trying define
policies in order to keep track of whether some local
user was responsible for an address. But that never
works out right because of the complexity it offers.

In qmail, programs and files are not addresses.
qmail-local can run programs or write to files as
directed by the .qmail configuration file in the local
directory of the user. The local user is always less

privileged than a root user. This follows the Content-
Independent Processing pattern.

Security Pattern: Content–independent Processing

Problem
In an MTA, the body of a message should not be
used for any other purposes. If message can be sent to
files and programs, and the files are overwritten by
message content or the programs execute with
message content as parameter, then an abuser can
send messages with malicious content to utilize this
feature for his benefit. How can a mail program be
made secure so that the message content cannot be
used maliciously?

Solution
Do not treat programs and files as addresses and
therefore do not use the message content for anything
other than message storage. Minimize the impact by
using less-privileged user to execute.

13. Conclusion

One of the main reasons given for monolithic
architectures is efficiency. Partitioning a system can
result in inefficiencies in both time and space. It is
easier to eliminate duplication when the entire
program is in one place. However, qmail is smaller
and more efficient than sendmail, in spite of being
more modular.

sendmail is made up of a single Unix program
and consists (sendmail 8.11.7) of 67936 lines in .c
files and 5378 lines in .h files. qmail is made up of
24 separate Unix programs and consists (qmail 1.03)
of 15542 total lines in .c files and 1075 lines in .h
files. Thus, sendmail is about four times larger than
qmail. Moreover, qmail does not reuse any Unix
libraries, while sendmail reuses the standard IO
libraries. Although qmail does not implement every
feature of sendmail, it supports some features (such
as extended protocols support for QMTP and QMQP,
support for mailing list using Variable Envelope
Return Paths etc.) that sendmail does not. Thus, the
qmail architecture allows it to be one fourth the size
of sendmail with similar number of features.

Another advantage of the qmail architecture is that
it is made from components that are small and easy
to understand. The largest module of qmail is qmail-
send, which is 1612 lines. All the rest are less than
800 lines. Except for qmail-send, we were able to
understand each component in no more than a couple
of hours. Understandability is especially important
for security.

9

The qmail architecture provides an outstanding
level of security by using compartmentalization and
distributed delegation to minimize the danger of
security holes and by using simplicity and coding
standards to eliminate security holes. This
architecture leads to a MTA that is efficient and
robust. We believe that other applications could also
make use of this architecture, and are looking for
examples.

References

[BB02] Initial Draft of Security Design Patterns, Open
Group (OG), led by Bob Blakley,
http://www.opengroup.org/security/gsp.htm
[BJ94] Patterns Generate Architecture, Kent Beck, Ralph
Johnson, Lecture Notes in Computer Science, 1994
[BS00] Secrets and Lies: Digital Security in a Networked
World, John Wiley, 2000, by Bruce Schneier
[BY97] Architectural patterns for enabling application
security, Joseph Yoder, Jeffrey Barcalow, PLoP 1997
http://citeseer.nj.nec.com/yoder98architectural.html
[CP93] A Rational Design Process: How and why to fake
it, Parnas, D.L., Clements, Paul C., IEEE Transactions on

Software Engineering, vol. 19, no. 2, pp. 251- 257,
February 1993
[DB97] D. J. Bernstein, qmail Author.
http://cr.yp.to/djb.html
[DSL] Online article “Life with qmail” by Dave Sill and
D. J. Bernstein http://www.lifewithqmail.org/
[DSL01] The qmail Handbook by Dave Sill, Apress,
October 15, 2001
[F02] Patterns for Operating Systems Access Control,
Eduaardo B. Fernandez, PLOP 2002.
http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings
[SAL75] The protection of information in computer
systems, J. H. Saltzer and M. D. Schroeder, In
Proceedings of the IEEE, volume 63(9), pages
1278–1308. IEEE, September 1975
[VW01] Trusting Components and Services, Richard
Veryard and Aidan Ward,
http://www.antelopes.com/trusting_components.html
[VM02] Building Secure Software - How to Avoid
Security Problems the Right Way, J. Viega and G.
McGraw, Addison-Wesley, September 2002.
[ZE98] Security Control for COTS Components, Q.
Zhong and N. Edwards, IEEE Computer vol. 31, no.
6, pp. 67-73, June 1998.

