
CS297- B. Narahari

CONTROL FLOW GRAPHS

• Motivation: language-independent and machine-
independent representation of control flow in
programs used in high-level and low-level code
optimizers. The flow graph data structure lends
itself to use of several important algorithms from
graph theory.

CS297- B. Narahari

Basic Blocks

• A straight line sequence of code
– a maximal sequence of instructions that can be entered

only at the first of them and exited only from the last of
them.

• First instruction of basic block can be:
– entry point of routine

– target of branch

– instruction immediately following branch - leaders

• extended basic block is maximal sequence that
contains no join nodes other than first node.
– Join node: if it has more than one predecessor

– Branch node: if it has more than one successor

CS297- B. Narahari

Control Flow Graph: Definition

A control flow graph CFG = (Nc ; Ec ; Tc) consists of

• Nc, a set of nodes. A node represents a straight-line
 sequence of operations with no intervening control

flow i.e. a basic block.
• Ec ⊆ Nc x Nc x Labels, a set of labeled edges.
• Tc , a node type mapping. Tc(n) identies the type of

node n as one of: START, STOP, OTHER.

We assume that CFG contains a unique START node
and a unique STOP node, and that for any node N in
CFG, there exist directed paths from START to N and
from N to STOP.

CS297- B. Narahari

Dominators: Definition

Node V dominates another node W = V of and only if
every directed path from START to W in CFG contains
V.

Define dom (W) = { V | V dominates W } , the set of
dominators of node W.

Consider any simple path from START to W containing
W 's dominators in the order V1,…,Vk. Then all
simple paths from START to W must contain W 's
dominators in the same order. The element closest to W,
Vk = idom (W), is called the immediate dominator of W.

CS297- B. Narahari

Control Flow Graphs

• From code can construct “flowchart”
• from flowchart to basic blocks
• edges come from the control flow information

CS297- B. Narahari

Control Flow Analysis

• Use dominators to discover loops and simply note
loops found for use in optimization

• alternate approach- interval analysis: Analyze
overall structure of routine and decompose it into
nested regions called intervals
– nesting structure forms tree, useful in structuring and

speeding up data flow analysis

CS297- B. Narahari

Dominators: Definition (Contd.)

The idom relation can be represented as a directed
tree with root = START, and parent(W) = idom (W).

CS297- B. Narahari

Postdominators: Definition

• Node W postdominates another node V = W if and
only if every directed path from V to STOP in CFG
contains W .

• Define pdom (V) = { W | W postdominates V}, the
set of postdominators of node V

• Consider any simple path from V to STOP
containing V’s postdominators in the order
W1,…,Wk. Then all simple paths from V to STOP
must contain V’s postdominators in the same order.
The element closest to V, W1 = ipdom(V), is called
the immediate postdominator of V.

• The ipdom relation can be represented as a
directed tree with root = is STOP and
parent(V) = ipdom(V)

CS297- B. Narahari

Example: Dominator and
Postdominator Trees

STOP

3

2

1

START

POST-DOMINATOR TREE

CONTROL FLOW GRAPH

STOP3

2

1

START

 DOM INATOR TREE

T

3

STOP

2

T

T

T

F

F

F

F

1

START

∑ ∈∀x

CS297- B. Narahari

Algorithms for computing
Dominator/Postdominator

• [Purdom and Moore, 1972] O(N x E) execution
 time

• [Lengauer and Tarjan, 1979]
 Simple version: O(E x logN) execution time

 Sophisticated version: O(E x α(E,N)) execution
time

• [Harel, 1985] O(N + E) execution time

CS297- B. Narahari

Loop Nesting Structure of a
Control Flow Graph

• The loop nesting structure of a CFG is revealed by
its interval structure:

• Edge e = (x, h, l) in CFG is called a back edge if
h ∈ dom (x); h is called a header node, and x is
called a latch node.

• The strongly connected region defined by back
edge e = (x, h, l) is STR(e), which consists of the
nodes and edges belonging to all paths from node h
to node x, along with the back edge (x,h, l).

• The interval with header h, I(h), is defined as the
union of STR(e) over all back edges e targeted to
header node h.

CS297- B. Narahari

Loop Nesting Structure of a
Control Flow Graph (Contd.)

• Interval nesting is defined by the subgraph
relationship. I(h1) is a subinterval of I(h2) if I(h1) is a
subgraph of I(h2).

• The interval nesting relation can then be
represented by a unique interval nesting tree (or
forest of trees).

• It is convenient to add a pseudo-edge from STOP to
START to make START a header node with
I(START) = entire CFG, and thus force the interval
relation to be a single tree rather

CS297- B. Narahari

Reducible Control Flow Graphs

• A CFG is reducible if and only if the directed graph
obtained by removing all back-edges is acyclic. This
graph is referred to as the forward control flow
graph.

CS297- B. Narahari

Example: Interval Structure for a
Reducible CFG

T

*

*

*
*

* Back edge

 INTERVALS IN A CONTROL FLOW GRAPH

I(START)

I(1)

I(2)

INTERVAL NESTING TREE

I(START)
START

3

STOP

2

T

T

T

F

F

F

F

1 I(1)

I(2)

CS297- B. Narahari

Example: Interval Structure for an
Irreducible CFG

START

1 2

3

STOP

T F

T

T

F

F

F

T

* *

I START

I(1)

* Back edge

INTERVALS IN A CONTROL FLOW GRAPH

I(START)

I(1)

INTERVAL NESTING TREE

CS297- B. Narahari

Data and Control Dependences

Motivation: identify only the essential control and data
dependences which need to be obeyed by
transformations for code optimization.

Program Dependence Graph (PDG) consists of
 1. Set of nodes, as in the CFG
 2. Control dependence edges
 3. Data dependence edges

Together, the control and data dependence edges
dictate whether or not a proposed code transformation
is legal.

CS297- B. Narahari

Control Dependence Analysis

We want to capture two related ideas with control
dependence analysis of a CFG:

1. Node Y should be control dependent on node X if
node X evaluates a predicate (conditional branch)
which can control whether node Y will subsequently
be executed or not. This idea is useful for
determining whether node Y needs to wait for node
X to complete, even though they have no data
dependences.

CS297- B. Narahari

Control Dependence Analysis (contd.)

2. Two nodes, Y and Z, should be identified as having
 identical control conditions if in every run of the
 program, node Y is executed if and only if node Z is
 executed. This idea is useful for determining
 whether nodes Y and Z can be made adjacent and
 executed concurrently, even though they may be far
 apart in the CFG.

CS297- B. Narahari

Control Dependence: Definition

[Ferrante et al, 1987]
Node Y is control dependent on node X with label L in
CFG if and only if

1. there exists a nonnull path X Y, starting with
the edge labeled L, such that Y post-dominates
every node, W, strictly between X and Y in the path,
and

2. Y does not post-dominate X

Y is control dependent on X only if X can directly affect
whether Y is executed or not; indirect control
dependence can be defined as the transitive closure of
control dependence

CS297- B. Narahari

Example: acyclic CFG and its
Control Dependence Graph

1

2 3

4

STOP

T F

u

u

u

START

T

T
F

CONTROL FLOW GRAPH

START

1

2 34

T

T T F

CONTROL DEPENDENCE GRAPH

STOP

START 1

2

43

POSTDOMINATOR TREE

CS297- B. Narahari

Example: CFG with multi-way
branch and its CDG

1

2 3

STOP

F

u

START

<0

T
F

CONTROL FLOW GRAPH

START

1

2 3

T

<0

=0

>0

CONTROL DEPENDENCE GRAPH

STOP

START 1 23

POSTDOMINATOR TREE

u

=0

CS297- B. Narahari

Algorithm for Computing Control
Dependence

Given node X and branch label L, all control
dependence successors can be enumerated as
follows:

 1. Z CFG successor of node X with label L

 2. while Z ≠ ipdom(X) do

 (a) /* Z is control dependent on X with label
 L process Z as desired */

 (b) Z ipdom(Z)

 end while

CS297- B. Narahari

Example: cyclic CFG and its
Control Dependence Graph

1

2 3

4

STOP

T F

u

u

F

START

T

T
F

CONTROL FLOW GRAPH

START

1

2 34

T

T T F

CONTROL DEPENDENCE GRAPH

STOP

START 1

2

43

POSTDOMINATOR TREE

T

CS297- B. Narahari

Example: another cyclic CFG and
its CDG

STOP

3

2

1

ENTRY

POST-DOMINATOR TREE

CONTROL FLOW GRAPH

ENTRY

CONTROL DEPENDENCE GRAPH

3

STOP

2

T

T

T

F

F

F

F

1

START

2 13

T T T

TTT

T

T

CS297- B. Narahari

Properties of Control Dependence

• CDG is a tree → CFG is structured

• CDG is acyclic → CFG is acyclic

• CDG is cyclic → CFG is cyclic

The control conditions of node Y is the set,

CC(Y) = {(X,L)|Y is control dependent on X with label L}

Two nodes, A and B, are said to be identically control
dependent if and only if they have the same set of
control conditions i.e. CC(A) = CC(B)

CS297- B. Narahari

Data Dependence Analysis

If two operations have potentially interfering data
accesses, data dependence analysis is necessary for
determining whether or not an interference actually
exists. If there is no interference, it may be possible to
reorder the operations or execute them concurrently.

The data accesses examined for data dependence
analysis may arise from array variables, scalar
variables, procedure parameters, pointer
dereferences, etc. in the original source program.

Data dependence analysis is conservative, in that it
may state that a data dependence exists between two
statements, when actually none exists.

CS297- B. Narahari

Data Dependence: Definition

A data dependence, S1 → S2, exists between CFG
nodes S1 and S2 with respect to variable X if and only if

1. there exists a path P: S1 → S2 in CFG, with no
intervening write to X, and

2. at least one of the following is true:

 (a) (flow) X is written by S1 and later read by S2, or
 (b) (anti) X is read by S1 and later is written by S2 or
 (c) (output) X is written by S1 and later written by S2

CS297- B. Narahari

Def/Use chaining for Data
Dependence Analysis

A def-use chain links a definition D (i.e. a write access
of variable X to each use U (i.e. a read access), such
that there is a path from D to U in CFG that does not
redefine X.

Similarly, a use-def chain links a use U to a definition
D, and a def-def chain links a definition D to a
definition D’ (with no intervening write to X in all
cases).

Def-use, use-def, and def-def chains can be computed
by data flow analysis, and provide a simple but
conservative way of enumerating flow, anti, and output
data dependences.

CS297- B. Narahari

Static single assignment (SSA)
form

• Static single assignment (SSA) form provides a
more efficient data structure for enumerating def-
use, def-use and def-def chains.

• SSA form requires that each use be reached by a
single def (when representing def-use information;
analogous requirements are enforced for
representing use-def and def-def information). Each
def is treated as a new “name” for the variable.

• Each variable is assumed to have a dummy
definition at the START node of the CFG.

• A φ function is used to capture the merge of multiple
reaching definitions

CS297- B. Narahari

Dealing with Merge Points

If Cond
Then X <--- 4
Else X <--- 6

o
o
o

Use variable X several times

• Tricky situation since both defs can reach all
subsequent uses; exact reaching def depends on
whether Cond evaluated to true or not

• Keeping track of true and false cases separately is
complicated and intractable (in the presence of
nested conditionals)

CS297- B. Narahari

The SSA approach

If Cond
Then X1 <--- 4
Else X2 <--- 6
 X3 <--- φ (X1,X2)

o
o
o

 Use variable X3 several times Add this line

• The SSA solution is to add a special ∅ function at
each merge point

• The new ∅-def X3 captures the merge of X1 and X2

