Part III. Sources of market power

Chapter 5. Product differentiation

-Where does the market power come from?

- Consequence of firms' conduct
- Marketing mix: Price - Product - Promotion
- Product \rightarrow Closer look at different types of product differentiation \rightarrow Chapter 5
- Promotion \rightarrow Advertising strategies \rightarrow Chapter 6
- Price \rightarrow Discrimination (Part IV)
- Consumer inertia (skipped) \rightarrow Chapter 7
- Search costs, switching costs, behavioural issues (statusqua bias) etc...

Chapter 5. Learning objectives

- Understand that product differentiation involves two conflicting forces: it relaxes price competition, but it may reduce the demand that the firm faces (niche market).
- Distinguish between horizontal (location) and vertical (quality) product differentiation.
- Reconsider the question of entry into product market.
- Discuss some basic approaches to estimate differentiated product markets.
- Horizontal product differentiation
- Each product would be preferred by some consumers, depending on their tastes.
- Vertical product differentiation
- Everybody would prefer one over the other product.
- More formally: if, at equal prices,
- consumers do not agree on which product is the preferred one \rightarrow products are horizontally differentiated;
- all consumers prefer one over the other product \rightarrow products are vertically differentiated.

Location choice with fixed price

- Suppose constant price (e.g., regulated price): $\bar{p}>c$
- Product positioning: Two firms choose where to locate their product in "linear city": $l_{1}, l_{2} \in[0,1]$.
- Consumers are as in the earlier Hotelling model:
- uniformly distributed on [0,1]; location represents the ideal point in product space; linear transportation cost.
- Need to buy one unit from one of the firms.
- $u_{x}\left(i, p_{i}\right)$ is the utility of buying from firm i at the price p_{i} for the consumer located at the point x :

$$
u_{x}\left(i, p_{i}\right)=r-\tau\left|x-l_{i}\right|-p_{i}
$$

Location choice with fixed price

- Since $p_{1}=p_{2}$, each consumer selects the nearest firm.
- If $l_{i}<l_{j}$, there is a unique indifferent consumer:

$$
\begin{aligned}
& \hat{x}=\frac{l_{1}+l_{2}}{2} \\
\rightarrow & Q_{i}=\hat{x}=\frac{l_{1}+l_{2}}{2} \\
\rightarrow & Q_{j}=1-\hat{x}=1-\frac{l_{1}+l_{2}}{2}
\end{aligned}
$$

$$
\rightarrow \quad Q_{i}=\hat{x}=\frac{l_{1}+l_{2}}{2} \quad(\text { demand for firm } i)
$$

(demand for firm j)

- If $l_{1}=l_{2}$, firms share the market equally: $Q_{1}=Q_{2}=\frac{1}{2}$
- Firm i 's problem: Given l_{j},

$$
\max _{l_{i} \in[0,1]} \pi_{i}\left(l_{1}, l_{2}\right)=(\bar{p}-c) Q_{i}\left(l_{1}, l_{2}\right)
$$

Location choice with fixed price

- It follows that:

$$
\pi_{i}\left(l_{1}, l_{2}\right)=\left\{\begin{array}{cl}
(\bar{p}-c)\left(l_{1}+l_{2}\right) / 2 & \text { if } l_{i}<l_{j} \\
(\bar{p}-c) / 2 & \text { if } l_{i}=l_{j} \\
(\bar{p}-c)\left[1-\left(l_{1}+l_{2}\right) / 2\right] & \text { if } l_{i}>l_{j}
\end{array}\right.
$$

Note:

- For $l_{i}<l_{j}, \pi_{i}$ is increasing with l_{i}. Getting closer to firm j brings more customers from the right side without losing anybody from the left side.
- Similarly, when $l_{i}>l_{j}$, firm i has an incentive to get closer to the other firm by moving leftward.
\rightarrow There is no Nash equilibrium with $l_{1} \neq l_{2}$.

Location choice with fixed price

- $l_{1}=l_{2}=1 / 2$ is an equilibrium because

$$
\pi_{i}\left(l_{i}, \frac{1}{2}\right) \leq \frac{\bar{p}-c}{2}=\pi_{i}\left(\frac{1}{2}, \frac{1}{2}\right) \quad \forall l_{i} \in[0,1] .
$$

- $l_{1}=l_{2} \neq 1 / 2$ is not an equilibrium.
- For example, if $l_{1}=l_{2}<1 / 2$, both firms get half of the market. Any firm i can move slightly rightward, to $l_{i}+\varepsilon$, so as to increase its market share to $\cong 1-l_{i}>1 / 2$.
- CONCLUSION: In the unique equilibrium, both firms select the midpoint; there is no product differentiation.

Location choice with fixed price

- Lesson: If duopolists were not able to entertain distinct prices, they would offer the same product. This is because differentiation reduces the demand for a given product by effectively targeting a smaller niche in the market.

Socially Efficient Locations:

- Minimize total distance:
$\begin{aligned} \min & \int_{0}^{l_{1}}\left(l_{1}-x\right) d x+\int_{l_{1}}^{\frac{l_{1}+l_{2}}{2}}\left(x-l_{1}\right) d x \\ & +\int_{l_{2}}^{1}\left(x-l_{2}\right) d x+\int_{\frac{l_{1}+l_{2}}{2}}^{l_{2}}\left(l_{2}-x\right) d x\end{aligned}$

$$
\text { s.t. }\left(l_{1}, l_{2}\right) \in[0,1]^{2} \text { and } l_{1} \leq l_{2} .
$$

- Solution: $l_{1}=1 / 4$ and $l_{2}=3 / 4$
\rightarrow Insufficient differentiation in equilibrium.

Hotelling model (full version)

- Firms choose location and price.
- 2 stage model

1. Location choice (long term decision)
2. Price choice (short term decision)

- We already studied (in Chapter 3) the price stage with extreme locations (i.e., 0 and 1).
- We will "repeat" (not really) the analysis for any pair of locations under two different scenarios:
- Linear transportation costs
- Quadratic transportation costs

Linear Hotelling model

- As before, consumers are distributed on [0,1] with the utility function:

$$
u_{x}\left(i, p_{i}\right)=r-\tau\left|x-l_{i}\right|-p_{i}
$$

- If both products are identical, firms share the market equally. Otherwise, there is at most one indifferent consumer.
- Firms:
- Choose first l_{i} in $[0,1]$ and then p_{i}
- Move simultaneously in both stages.
- Look for subgame perfect equilibria (backward induction).
- First step: Fix l_{1} and l_{2}. Analyse the ensuing price stage.

Linear Hotelling model (cont'd)

Price stage:

- If $l_{1}=l_{2}$, we are back to Bertrand: The cheaper firm gets the whole market.

$$
\rightarrow p_{1}=p_{2}=c
$$

- If $l_{1}<l_{2}$, depending on prices, either there is an indifferent consumer between the two locations, or all consumers select the same firm:

$$
\begin{array}{ll}
& r-\tau\left(\hat{x}-l_{1}\right)-p_{1}=r-\tau\left(l_{2}-\hat{x}\right)-p_{2} \\
\rightarrow \quad & \hat{x}=\frac{l_{1}+l_{2}}{2}-\frac{p_{1}-p_{2}}{2 \tau}=\frac{l_{1}+l_{2}}{2}+\frac{p_{2}-p_{1}}{2 \tau} \\
& \quad \hat{x} \geq l_{1} \leftrightarrow p_{1}-p_{2} \leq \tau\left(l_{2}-l_{1}\right) \\
\text { So, } & \hat{x} \leq l_{2} \leftrightarrow p_{1}-p_{2} \geq-\tau\left(l_{2}-l_{1}\right)
\end{array}
$$

Linear Hotelling model (cont'd)

- If price difference is "not too large" relative to locations, meaning that $\left|p_{1}-p_{2}\right| \leq \tau\left(l_{2}-l_{1}\right)$, then there is an indifferent consumer given by:

$$
\hat{x}=\frac{l_{1}+l_{2}}{2}-\frac{p_{1}-p_{2}}{2 \tau}
$$

- Otherwise, i.e., if $\left|p_{1}-p_{2}\right|>\tau\left(l_{2}-l_{1}\right)$, the cheaper firm gets the whole market. (Note the role of linear costs here.)

Linear Hotelling model (cont'd)

Linear Hotelling model (cont'd)

- Profit of firm 1 (assuming $l_{1}<l_{2}$, given p_{2}):

$$
\pi_{1}\left(p_{1} p_{2} ; l_{1}, l_{2}\right)=\left\{\begin{array}{cc}
0 & \text { if } p_{1}>p_{2}+\tau\left(l_{2}-l_{1}\right), \\
\left(p_{1}-c\right)\left(\frac{l_{1}+l_{2}}{2}+\frac{p_{2}-p_{1}}{2 \tau}\right) & \text { if }\left|p_{1}-p_{2}\right| \leq \tau\left(l_{2}-l_{1}\right), \\
\left(p_{1}-c\right) & \text { if } p_{1}<p_{2}-\tau\left(l_{2}-l_{1}\right) .
\end{array}\right.
$$

- Note:

$$
\begin{aligned}
p_{1}=p_{2}-\tau\left(l_{2}-l_{1}\right) \rightarrow \pi_{1} & =\left(p_{1}-c\right) l_{2} \\
& <\left(p_{1}-c\right) \quad\left(\text { unless } l_{2}=1\right)
\end{aligned}
$$

\rightarrow Discontinuity at $p_{1}=p_{2}-\tau\left(l_{2}-l_{1}\right)$
Intuition: Firm 2 has zero demand if it can't attract the consumer located at l_{2}. Otherwise, its demand is at least $1-l_{2}$, because any $x \geq l_{2}$ buys from 2. So, Q_{2} falls from $1-l_{2}$ to 0 , suddenly, at a certain level of p_{1}.

Linear Hotelling model (cont'd)

A sharp fall in π_{1}

Price equilibrium may fail to exist

Happens when locations selected in stage 1 are too close, so that the arc is narrow.

Linear Hotelling model (cont'd)

- Price equilibrium fails to exist for some pairs of location \rightarrow no subgame perfect equilibrium
- Recall that if firms don't expect a price difference in stage 2, they would select the same location in stage 1 to maximize their demand. But when the locations are truly close, there is no price equilibrium. So, firms may indeed want to move towards a zone where price equilibrium does not exist.
- Instability in competition
- Lesson: Although product differentiation relaxes price competition, firms may have an incentive to offer better substitutes to generate more demand, which may lead to instability in competition.

Quadratic Hotelling model

- Transport costs increase quadratically:

$$
u_{x}\left(i, p_{i}\right)=r-\tau\left(x-l_{i}\right)^{2}-p_{i}
$$

- Suppose $l_{1}<l_{2}$. Since $x \rightarrow \tau\left(x-l_{2}\right)^{2}$ is strictly convex, even if $x=l_{2}$ selects firm 1, consumers further on the right may select firm 2 because the additional distance to firm 1 will be costlier for them.
- Formally, for $l_{1}<l_{2}$ and $x \geq l_{2}$, the added cost of traveling to the distant firm l_{1} increases with x :

$$
\frac{d}{d x}\left[\left(x-l_{1}\right)^{2}-\left(x-l_{2}\right)^{2}\right]=2\left(l_{2}-l_{1}\right)>0 .
$$

- \rightarrow No discontinuity in demand, in the price stage.

Quadratic Hotelling model (cont'd)

- Price Stage:
- Indifferent consumer (assuming $l_{1}<l_{2}$):

$$
\begin{array}{ll}
r-\tau\left(x-l_{1}\right)^{2}-p_{1}=r-\tau\left(x-l_{2}\right)^{2}-p_{2} & \leftrightarrow \\
\tau\left[\left(x-l_{2}\right)^{2}-\left(x-l_{1}\right)^{2}\right]=p_{1}-p_{2} & \leftrightarrow \\
\tau\left[\left(2 x-\left(l_{1}+l_{2}\right)\right) *\left(l_{1}-l_{2}\right)\right]=p_{1}-p_{2} & \leftrightarrow \\
\quad \rightarrow \quad \hat{x}=\frac{l_{1}+l_{2}}{2}+\frac{p_{2}-p_{1}}{2 \tau\left(l_{2}-l_{1}\right)} &
\end{array}
$$

- So, $\hat{x} \uparrow$ with $p_{2}-p_{1}$, given $l_{1}<l_{2}$
- If $\hat{x}>1$, we must set $Q_{2} \equiv 0$, and similarly for $\hat{x}<0$.
- Nevermind: Equilibrium prices will be such that $\hat{x} \in[0,1]$.

Quadratic Hotelling model (cont'd)

- Price Stage (cont'd):
- Assuming $l_{1}<l_{2}$, the firms' problem are:

$$
\begin{align*}
& \max _{p_{1} \geq 0}\left(p_{1}-c\right) \hat{x}\left(p_{1}, p_{2}\right) \text { and } \max _{p_{2} \geq 0}\left(p_{2}-c\right)\left(1-\hat{x}\left(p_{1}, p_{2}\right)\right) \\
& \rightarrow \quad p_{1}^{*}=c+\frac{2 \tau}{3}\left(l_{2}-l_{1}\right)\left(1+\frac{l_{1}+l_{2}}{2}\right) \\
& \quad p_{2}^{*}=c+\frac{2 \tau}{3}\left(l_{2}-l_{1}\right)\left(2-\frac{l_{1}+l_{2}}{2}\right) \tag{1}
\end{align*}
$$

- Note: Holding constant the midpoint $\frac{l_{1}+l_{2}}{2}$, both prices are increasing with $l_{2}-l_{1}$.
- Illustrates how product differentiation helps relax the price competition.
- Note: Eqn (1) is also valid with $l_{1}=l_{2}$ (Bertrand)

Quadratic Hotelling model (cont'd)

- Location Stage:
- Remember, however, closer locations increase the demand with fixed prices. At the location stage, firms need to take into account both effects simultaneously.
- Subsitute eqn (1) into profits, and the definition of $\hat{x} \rightarrow$

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{1}{18} \tau\left(l_{2}-l_{1}\right)\left(2+l_{1}+l_{2}\right)^{2} \\
& \hat{\pi}_{2}=\frac{1}{18} \tau\left(l_{2}-l_{1}\right)\left(4-l_{1}-l_{2}\right)^{2}
\end{aligned} \rightarrow \begin{aligned}
& \partial \hat{\pi}_{1} / \partial l_{1}<0 \text { for all } l_{1} \in\left[0, l_{2}\right) \\
& \partial \hat{\pi}_{2} / \partial l_{2}>0 \text { for all } l_{2} \in\left(l_{1}, 1\right]
\end{aligned}
$$

- Subgame perfect equilibrium: firms locate at the extreme points \rightarrow "maximum differentiation"
- The dominant force here is to relax price competition.

Quadratic Hotelling model (cont'd)

- But this is just a particular example. Different results obtain:
- if we remove the boundaries, 0 and 1. (Optimal locations will be $-1 / 4$ and $5 / 4$.)
- if we select a non-uniform distribution for the consumers.
- if we select a different function for cost of traveling.

Quadratic Hotelling model (cont'd)

- General Conclusions:
- 2 forces at play
- Competition effect \rightarrow differentiate to enjoy market power \rightarrow drives competitors apart
- Market size effect \rightarrow meet consumers preferences \rightarrow brings competitors together
- Balance (equilibrium)depends on distribution of consumers, shape of transportation costs function and feasible product range
- Lesson: With endogenous product differentiation, the degree of differentiation is determined by balancing
- the competition effect (drives firm to \uparrow differentiation)
- the market size effect (drives firm to \downarrow differentiation).

Vertical product differentiation

- All consumers agree that one product is preferable to another, i.e., has a higher quality.
- Consumers:
- Preference parameter for quality: $\theta \in[\underline{\theta}, \bar{\theta}] \subseteq \mathbb{R}_{+}$
- larger $\theta \rightarrow$ consumer more sensitive to quality changes
- Each consumer chooses 1 unit of 1 of the products
- Distributed uniformly on $[\underline{\theta}, \bar{\theta}]$, total mass is $M=\bar{\theta}-\underline{\theta}$
- $s_{i} \in[\underline{s}, \bar{s}] \subseteq \mathbb{R}_{+}$stands for the quality of product i

Vertical product differentiation (cont'd)

- Utility of consumer θ from one unit of product i :

$$
u_{\theta}\left(s_{i}, p_{i}\right)=r+\theta s_{i}-p_{i}
$$

Key feature: If $s_{2}>s_{1}$, then

$$
u_{\theta}\left(s_{2}, p\right)-u_{\theta}\left(s_{1}, p\right)=\theta\left(s_{2}-s_{1}\right) \text { is } \uparrow \text { in } \theta
$$

\rightarrow Higher $\theta=$ stronger sensitivity to quality differences

Firms: Duopolists

- Stage 1: Choose quality: s_{1}, s_{2}
- Stage 2: Choose price: p_{1}, p_{2}
- Simultaneous move in both stages
- Constant marginal cost, $c=0$

Vertical product differentiation (cont'd)

- Price stage: Suppose $s_{1}<s_{2}$
- The indifferent consumer $\hat{\theta}$ is given by (if it exists):

$$
\begin{gathered}
r+\hat{\theta} s_{1}-p_{1}=r+\hat{\theta} s_{2}-p_{2} \\
\rightarrow \hat{\theta}=\frac{p_{2}-p_{1}}{s_{2}-s_{1}} ; \quad \frac{\theta<\hat{\theta} \text { prefers the lower quality } s_{1}}{\theta>\hat{\theta} \text { prefers the higher quality } s_{2}}
\end{gathered}
$$

Compare with the endogenous sunk-costs/quality augmented Cournot:

- In that model price-quality ratio is the same for every firm; consumers are indifferent between all products.
- Here, a given consumer prefers one or the other good, depending on their sensitivity to quality. (Consumers are more heterogeneous.)

Vertical product differentiation (cont'd)

- Price stage (cont'd)
- An indifferent consumer truly exists iff:

$$
\underline{\theta} \leq \hat{\theta} \leq \bar{\theta} \quad \leftrightarrow \quad \underline{\theta}\left(s_{2}-s_{1}\right) \leq p_{2}-p_{1} \leq \bar{\theta}\left(s_{2}-s_{1}\right)
$$

Hence (assuming $s_{2}>s_{1}$):

$$
\pi_{1}=\left\{\begin{array}{cc}
0 & \text { if } p_{1}>p_{2}-\underline{\theta}\left(s_{2}-s_{1}\right), \\
p_{1}\left(\frac{p_{2}-p_{1}}{s_{2}-s_{1}}-\underline{\theta}\right) & \text { if } \underline{\theta}\left(s_{2}-s_{1}\right) \leq p_{2}-p_{1} \leq \bar{\theta}\left(s_{2}-s_{1}\right), \\
p_{1}(\bar{\theta}-\underline{\theta}) & \text { if } p_{1}<p_{2}-\bar{\theta}\left(s_{2}-s_{1}\right) .
\end{array}\right.
$$

- No discontinuity because $p_{1}=p_{2}-\bar{\theta}\left(s_{2}-s_{1}\right) \rightarrow \pi_{1}=p_{1}(\bar{\theta}-\underline{\theta})$
- Moreover, π_{1} is increasing in p_{1} up to this point.

Vertical product differentiation (cont'd)

Price stage (cont'd)

- The quadratic part $p_{1}\left(\frac{p_{2}-p_{1}}{s_{2}-s_{1}}-\underline{\theta}\right)$ is maximized at

$$
p_{1}\left(p_{2}\right)=\frac{1}{2}\left[p_{2}-\underline{\theta}\left(s_{2}-s_{1}\right)\right]
$$

- This is the best response if it is positive. Otherwise, $\pi_{1}=0$ because firm 1 has no demand for any $p_{1} \geq 0$, and a best response is $p_{1}=0$.

Vertical product differentiation (cont'd)

Price stage (cont'd). Similarly:

$$
\begin{aligned}
\pi_{2} & =\left\{\begin{array}{cc}
p_{2}(\bar{\theta}-\underline{\theta}) & \text { if } p_{1}>p_{2}-\underline{\theta}\left(s_{2}-s_{1}\right), \\
p_{2}\left(\bar{\theta}-\frac{p_{2}-p_{1}}{s_{2}-s_{1}}\right) & \text { if } \underline{\theta}\left(s_{2}-s_{1}\right) \leq p_{2}-p_{1} \leq \bar{\theta}\left(s_{2}-s_{1}\right), \\
0 & \text { if } p_{1}<p_{2}-\bar{\theta}\left(s_{2}-s_{1}\right) .
\end{array}\right. \\
& \rightarrow \quad p_{2}\left(p_{1}\right)=\frac{1}{2}\left[\bar{\theta}\left(s_{2}-s_{1}\right)+p_{1}\right] \quad \text { (best response) }
\end{aligned}
$$

- Equilibrium:

$$
\begin{align*}
& p_{1}^{*}=\frac{1}{3}(\bar{\theta}-2 \underline{\theta})\left(s_{2}-s_{1}\right) \\
& p_{2}^{*}=\frac{1}{3}(2 \bar{\theta}-\underline{\theta})\left(s_{2}-s_{1}\right) \tag{2}
\end{align*}
$$

(assuming $\bar{\theta}>2 \underline{\theta}$)
\rightarrow Even the price of the low-quality firm increases with the quality difference!

Vertical product differentiation (cont'd)
 - Price stage (cont'd)

Note: Suppose $\bar{\theta} \leq 2 \underline{\theta}$. Set $p_{2} \equiv p_{2}(0)=\bar{\theta}\left(s_{2}-s_{1}\right) / 2$.
$\rightarrow \quad \hat{\theta}=\frac{p_{2}-p_{1}}{s_{2}-s_{1}} \leq \frac{p_{2}}{s_{2}-s_{1}}=\frac{1}{2} \bar{\theta} \leq \underline{\theta}$

- That is, firm 1 cannot get a positive demand even if it sets $p_{1}=0$. This makes $p_{1}^{*}=0$ a best response.
- Then, $p_{2}^{*} \equiv p_{2}(0)$ is a best response too.
\rightarrow Conclusion: If $\bar{\theta} \leq 2 \underline{\theta}$ and $s_{1} \neq s_{2}$, the high quality firm gets the whole market, the other firm shuts down in the price stage.
- Henceforth, assume $\bar{\theta}>2 \underline{\theta}$, so that both firms remain active in stage 2.

Vertical product differentiation (cont'd)

- Quality stage
- Substitute p_{1}^{*} and p_{2}^{*} from eqn (2) into stage 1 profit function:

$$
\begin{aligned}
& \pi_{1}\left(s_{1}, s_{2}\right)=\frac{1}{9}(\bar{\theta}-2 \underline{\theta})^{2}\left(s_{2}-s_{1}\right) \\
& \pi_{2}\left(s_{1}, s_{2}\right)=\frac{1}{9}(2 \bar{\theta}-\underline{\theta})^{2}\left(s_{2}-s_{1}\right)
\end{aligned}
$$

- Both profits \uparrow in the quality difference $s_{2}-s_{1}$.
- \rightarrow equilibrium quality choices: $s_{1}^{*}=\underline{s}$ and $s_{2}^{*}=\bar{s}$
- The converse is also possible by symmetry in this simultaneous move game.
- Note: Sequential quality selection would imply a first mover advantage, because of strategic substitutability. The first mover would select \bar{s} and get a higher profit as in π_{2} above.

Vertical product differentiation (cont'd)

- Note that the marginal cost of quality is assumed to be 0 here. If we were to take into account the cost of producing a high quality product, optimal quality choices may not be so extreme. The general conclusion is the following:
- Lesson: In markets in which products can be vertically differentiated, the firms offer different qualities in equilibrium so as to relax price competition.

Case. VLJ industry: "Battle of bathrooms"

- Very Light Jets
- 4 to 8 passengers, city-to-city, 60 to 90 -minute trips

Vertical differentiation: Entry problem revisited

- Recall Chapter 4: Quality augmented Cournot may bound the number of firms in oligopolistic markets. (Requires costly quality choice.)
- The present model predicts a limited number of firms even for costless quality choice and arbitrarily small entry costs.
- The presence of a small entry cost creates a small economies of scale, which turns out to be sufficient to limit the number of active firms. We may even have a natural monopoly.
- But the equilibrium number of firms goes to ∞ as the mass of consumers $M=\bar{\theta}-\underline{\theta} \uparrow \infty$.

Vertical differentiation: Entry problem revisited

- Formally, recall that if $\bar{\theta} \leq 2 \underline{\theta}$ the low quality firm shuts down.
- No other firm will have an incentive to enter.
\rightarrow Natural monopoly.
- More generally, it can be shown that, for arbitrarily small entry costs, the equilibrium number of active firms is the smallest integer n such that

$$
\bar{\theta} \leq 2^{n} \underline{\theta}
$$

- See the book for the details.
- Note: In contrast to the earlier model, equilibrium number of firms "slowly" $\rightarrow \infty$ as the mass of consumers, $\bar{\theta}-\underline{\theta}$, goes to ∞.

Probabilistic choice

- Discrete choice problem: Choose one among few options.
- Empirical analysis of discrete choice problems are based on the so called "random" or "probabilistic" choice models.
- Random component is meant to capture consumer heterogeneity in tastes or quality sensitivity etc.
- There can also be unpredictable variations in the behaviour of a given consumer.

Probabilistic choice \& horizontal differentiation

- Suppose the utility of a product i is a random variable: $\quad v_{i} \equiv \bar{v}_{i}+\varepsilon_{i}$
- $\bar{v}_{i} \equiv u\left(r, p_{i}\right)$ is the (mean) utility, including the effect of price
- The observable part of utility that we can estimate.
- ε_{i} is the random part: Exogenous.
- Think of it as a random taste parameter: For example, this can be the distance between a particular product location i and a randomly chosen consumer.
- Assumption: The expected value of ε_{i} is 0
- $\rightarrow \mathrm{E}\left(v_{i}\right)=\bar{v}_{i}$. So, \bar{v}_{i} is the mean or expected utility from product i. In the "linear city" this is the utility of the consumer $x=1 / 2$ from the product i

Probabilistic choice \& horizontal diff. (cont'd)

- Let e_{i} denote the realization of $\varepsilon_{j}-\varepsilon_{i}$.
- Our randomly chosen consumer selects the product i over j iff $v_{i}>v_{j}$, iff

$$
\bar{v}_{i}-\bar{v}_{j}>e_{i}
$$

- Thus, with two products, and assuming continuous distributions, the choice probability of i is:

$$
\operatorname{Pr}\left(e_{i} \leq \bar{v}_{i}-\bar{v}_{j}\right) \equiv F_{i}\left(\bar{v}_{i}-\bar{v}_{j}\right),
$$

where F_{i} is the distribution function of $\varepsilon_{j}-\varepsilon_{i}$.

- Typically ε_{1} and ε_{2} are assumed to be i.i.d. with a well behaved distribution (e.g., logistic distribution).
- \rightarrow Particular functional form for $F_{i}\left(\bar{v}_{i}-\bar{v}_{j}\right)$ (optional: see the book)

Probabilistic choice \& horizontal diff. (cont'd)

- Let α_{i} denote the market share of product i.
- Our first demand equation is:

$$
\begin{equation*}
\alpha_{i}=F_{i}\left(\bar{v}_{i}-\bar{v}_{j}\right) \tag{D1}
\end{equation*}
$$

- LHS is observable, RHS is an exogenously given function of the variables \bar{v}_{1} and \bar{v}_{2}.
- Second demand equation decomposes \bar{v}_{i} :

$$
\begin{equation*}
\bar{v}_{i}=\beta x_{i}-\gamma p_{i}+\xi_{i} \tag{D2}
\end{equation*}
$$

- x_{i} is the vector of observed product characteristic (location, level of sugar or alcohol etc.)
- $\quad \gamma$ measures the effect of price
- $\quad \xi_{i}$ is an error term, that will be left unexplained
- Use (D1) and (D2) to estimate (β, γ) and thereby $\left(\bar{v}_{1}, \bar{v}_{2}\right)$

Probabilistic choice \& product diff.: Final remarks

- First order conditions of the firms will also depend on the demand function/market share, which will give one more equation that depends on γ.
- If there are n products, choice probability of i will be:

$$
\operatorname{Pr}\left(v_{i}=\max \left\{v_{1}, \ldots, v_{n}\right\}\right)=\operatorname{Pr}\left(\bar{v}_{i}-\bar{v}_{j} \geq \varepsilon_{j}-\varepsilon_{i} \forall j \neq i\right)
$$

- This can be computed as a function of $\left(\bar{v}_{1}, \ldots, \bar{v}_{n}\right)$ given the joint distribution of $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$.
- In case of vertical differentiation, we need an additional random variable θ_{k} that represents the quality-sensitivity of consumer k. (The main methodological ideas are similar.)

Review questions

- What makes firms locate close to each other in the product space? And what does it make them differentiate themselves from their competitors?
- Explain the main difference between horizontal and vertical product differentiation.
- Determine if the following statements are true or false. Explain your answer.
- In horizontal product differentiation, firms always select most extreme positions.
- In a model of vertical product differentiation with sequential moves, the firm that selects the quality first is advantageous.
- The number of firms in an industry with constant marginal costs necessarily converges to infinity as the entry cost goes to zero.

