Part III. Sources of market power

Chapter 5. Product differentiation

Nicks In Market Sand Strategies De Labeleflamme and Martin Peitz, 2d Editor

• Where does the market power come from?

- Consequence of firms' conduct
 - Marketing mix: Price Product Promotion
 - Product → Closer look at different types of product differentiation → Chapter 5
 - Promotion → Advertising strategies → Chapter 6
 - **P**rice \rightarrow **Discrimination** (Part IV)

• Consumer inertia (skipped) → Chapter 7

 Search costs, switching costs, behavioural issues (statusqua bias) etc...

Chapter 5. Learning objectives

- Understand that product differentiation involves two conflicting forces: it relaxes price competition, but it may reduce the demand that the firm faces (niche market).
- Distinguish between horizontal (location) and vertical (quality) product differentiation.
- Reconsider the question of entry into product market.
- Discuss some basic approaches to estimate differentiated product markets.

Horizontal product differentiation

- Each product would be preferred by some consumers, depending on their tastes.
- Vertical product differentiation
 - Everybody would prefer one over the other product.
- More formally: if, at equal prices,
 - consumers do not agree on which product is the preferred one → products are *horizontally* differentiated;
 - all consumers prefer one over the other product → products are vertically differentiated.

- Suppose constant price (e.g., regulated price): $\overline{p} > c$
- Product positioning: Two firms choose where to locate their product in "linear city": l₁, l₂ ∈ [0,1].
- Consumers are as in the earlier Hotelling model:
 - uniformly distributed on [0,1]; location represents the ideal point in product space; linear transportation cost.
 - Need to buy one unit from one of the firms.
 - $u_x(i, p_i)$ is the utility of buying from firm *i* at the price p_i for the consumer located at the point *x*:

$$u_x(i, p_i) = r - \tau |x - l_i| - p_i$$

- Since $p_1 = p_2$, each consumer selects the nearest firm.
- If $l_i < l_j$, there is a unique indifferent consumer:

$$\hat{x} = \frac{l_1 + l_2}{2}$$

$$\rightarrow \quad Q_i = \hat{x} = \frac{l_1 + l_2}{2} \qquad (demand for firm i)$$

$$\rightarrow \quad Q_j = 1 - \hat{x} = 1 - \frac{l_1 + l_2}{2} \qquad (demand for firm j)$$

• If $l_1 = l_2$, firms share the market equally: $Q_1 = Q_2 = \frac{1}{2}$

• Firm *i*'s problem: Given l_j , $\max_{l_i \in [0,1]} \pi_i(l_1, l_2) = (\bar{p} - c)Q_i(l_1, l_2)$

It follows that:

$$\pi_i(l_1, l_2) = \begin{cases} (\bar{p} - c)(l_1 + l_2)/2 & \text{if } l_i < l_j, \\ (\bar{p} - c)/2 & \text{if } l_i = l_j, \\ (\bar{p} - c)[1 - (l_1 + l_2)/2] & \text{if } l_i > l_j. \end{cases}$$

Note:

- For $l_i < l_j$, π_i is increasing with l_i . Getting closer to firm *j* brings more customers from the right side without losing anybody from the left side.
- Similarly, when $l_i > l_j$, firm *i* has an incentive to get closer to the other firm by moving leftward.
- \rightarrow There is no Nash equilibrium with $l_1 \neq l_2$.

• $l_1 = l_2 = 1/2$ is an equilibrium because

$$\pi_i\left(l_i,\frac{1}{2}\right) \leq \frac{\bar{p}-c}{2} = \pi_i\left(\frac{1}{2},\frac{1}{2}\right) \qquad \forall l_i \in [0,1].$$

- $l_1 = l_2 \neq 1/2$ is not an equilibrium.
 - For example, if $l_1 = l_2 < 1/2$, both firms get half of the market. Any firm *i* can move slightly rightward, to $l_i + \varepsilon$, so as to increase its market share to $\approx 1 l_i > 1/2$.
- **CONCLUSION:** In the unique equilibrium, both firms select the midpoint; there is no product differentiation.

 Lesson: If duopolists were not able to entertain distinct prices, they would offer the same product. This is because differentiation reduces the demand for a given product by effectively targeting a smaller niche in the market.

Socially Efficient Locations:

Minimize total distance:

min
$$\int_{0}^{l_{1}} (l_{1} - x) dx + \int_{l_{1}}^{\frac{l_{1} + l_{2}}{2}} (x - l_{1}) dx$$

+ $\int_{l_{2}}^{1} (x - l_{2}) dx + \int_{\frac{l_{1} + l_{2}}{2}}^{l_{2}} (l_{2} - x) dx$

s.t. $(l_1, l_2) \in [0, 1]^2$ and $l_1 \le l_2$.

• Solution: $l_1 = 1/4$ and $l_2 = 3/4$

 \rightarrow Insufficient differentiation in equilibrium.

Hotelling model (full version)

- Firms choose location and price.
- 2 stage model
 - 1. Location choice (long term decision)
 - 2. Price choice (short term decision)
- We already studied (in Chapter 3) the price stage with extreme locations (i.e., 0 and 1).
- We will "repeat" (not really) the analysis for any pair of locations under two different scenarios:
 - Linear transportation costs
 - Quadratic transportation costs

Linear Hotelling model

• As before, consumers are distributed on [0,1] with the utility function:

 $u_x(i, p_i) = r - \tau |x - l_i| - p_i$

- If both products are identical, firms share the market equally. Otherwise, there is at most one indifferent consumer.
- Firms:
 - Choose first l_i in [0,1] and then p_i
 - Move simultaneously in both stages.
- Look for subgame perfect equilibria (backward induction).
 - First step: Fix l₁ and l₂. Analyse the ensuing price stage.

- Price stage:
 - If $l_1 = l_2$, we are back to Bertrand: The cheaper firm gets the whole market.

 $\rightarrow p_1 = p_2 = c$

If l₁ < l₂, depending on prices, either there is an indifferent consumer between the two locations, or all consumers select the same firm:

 $r - \tau(\hat{x} - l_1) - p_1 = r - \tau(l_2 - \hat{x}) - p_2$

$$\rightarrow \quad \hat{x} = \frac{l_1 + l_2}{2} - \frac{p_1 - p_2}{2\tau} = \frac{l_1 + l_2}{2} + \frac{p_2 - p_1}{2\tau}$$

So, $\hat{x} \ge l_1 \leftrightarrow p_1 - p_2 \le \tau(l_2 - l_1)$ $\hat{x} \le l_2 \leftrightarrow p_1 - p_2 \ge -\tau(l_2 - l_1)$

• If price difference is "not too large" relative to locations, meaning that $|p_1 - p_2| \le \tau(l_2 - l_1)$, then there is an indifferent consumer given by:

$$\hat{x} = \frac{l_1 + l_2}{2} - \frac{p_1 - p_2}{2\tau}$$

• Otherwise, i.e., if $|p_1 - p_2| > \tau(l_2 - l_1)$, the cheaper firm gets the whole market. (Note the role of linear costs here.)

• Profit of firm 1 (assuming $l_1 < l_2$, given p_2):

$$\pi_{1}(p_{1}p_{2};l_{1},l_{2}) = \begin{cases} 0 & \text{if } p_{1} > p_{2} + \tau(l_{2} - l_{1}), \\ (p_{1} - c)\left(\frac{l_{1} + l_{2}}{2} + \frac{p_{2} - p_{1}}{2\tau}\right) & \text{if } |p_{1} - p_{2}| \le \tau(l_{2} - l_{1}), \\ (p_{1} - c) & \text{if } p_{1} < p_{2} - \tau(l_{2} - l_{1}). \end{cases}$$

• Note:

$$p_1 = p_2 - \tau(l_2 - l_1) \rightarrow \pi_1 = (p_1 - c)l_2 < (p_1 - c) \quad \text{(unless } l_2 = 1)$$

 \rightarrow Discontinuity at $p_1 = p_2 - \tau (l_2 - l_1)$

Intuition: Firm 2 has zero demand if it can't attract the consumer located at l_2 . Otherwise, its demand is at least $1 - l_2$, because any $x \ge l_2$ buys from 2. So, Q_2 falls from $1 - l_2$ to 0, suddenly, at a certain level of p_1 .

so that the arc is

narrow.

- Price equilibrium fails to exist for some pairs of location \rightarrow no subgame perfect equilibrium
- Recall that if firms don't expect a price difference in stage 2, they would select the same location in stage 1 to maximize their demand. But when the locations are truly close, there is no price equilibrium. So, firms may indeed want to move towards a zone where price equilibrium does not exist.
 - Instability in competition
- Lesson: Although product differentiation relaxes price competition, firms may have an incentive to offer better substitutes to generate more demand, which may lead to instability in competition.

Quadratic Hotelling model

Transport costs increase quadratically:

 $u_x(i, p_i) = r - \tau (x - l_i)^2 - p_i$

- Suppose $l_1 < l_2$. Since $x \to \tau (x l_2)^2$ is strictly convex, even if $x = l_2$ selects firm 1, consumers further on the right may select firm 2 because the additional distance to firm 1 will be costlier for them.
 - Formally, for $l_1 < l_2$ and $x \ge l_2$, the added cost of traveling to the distant firm l_1 increases with x:

 $\frac{d}{dx}[(x-l_1)^2 - (x-l_2)^2] = 2(l_2 - l_1) > 0.$

• \rightarrow No discontinuity in demand, in the price stage.

- Price Stage:
 - Indifferent consumer (assuming $l_1 < l_2$):

$$r - \tau (x - l_1)^2 - p_1 = r - \tau (x - l_2)^2 - p_2 \quad \leftrightarrow$$

$$\tau[(x - l_2)^2 - (x - l_1)^2] = p_1 - p_2 \quad \longleftrightarrow$$

$$\tau[(2x - (l_1 + l_2)) * (l_1 - l_2)] = p_1 - p_2 \quad \leftrightarrow$$

$$\rightarrow \qquad \hat{x} = \frac{l_1 + l_2}{2} + \frac{p_2 - p_1}{2\tau(l_2 - l_1)}$$

- So, $\hat{x} \uparrow$ with $p_2 p_1$, given $l_1 < l_2$
- If $\hat{x} > 1$, we must set $Q_2 \equiv 0$, and similarly for $\hat{x} < 0$.
 - Nevermind: Equilibrium prices will be such that $\hat{x} \in [0,1]$.

- Price Stage (cont'd):
 - Assuming $l_1 < l_2$, the firms' problem are:

 $\max_{p_1 \ge 0} (p_1 - c) \hat{x}(p_1, p_2) \text{ and } \max_{p_2 \ge 0} (p_2 - c) (1 - \hat{x}(p_1, p_2))$

$$\rightarrow \qquad p_1^* = c + \frac{2\tau}{3} (l_2 - l_1) \left(1 + \frac{l_1 + l_2}{2} \right) \\ p_2^* = c + \frac{2\tau}{3} (l_2 - l_1) \left(2 - \frac{l_1 + l_2}{2} \right)$$
(1)

- Note: Holding constant the midpoint $\frac{l_1+l_2}{2}$, both prices are increasing with $l_2 l_1$.
 - Illustrates how product differentiation helps relax the price competition.
- Note: Eqn (1) is also valid with $l_1 = l_2$ (Bertrand)

- Location Stage:
 - Remember, however, closer locations increase the demand with fixed prices. At the location stage, firms need to take into account both effects simultaneously.
 - Subsitute eqn (1) into profits, and the definition of $\hat{x} \rightarrow$

$$\hat{\pi}_{1} = \frac{1}{18} \tau (l_{2} - l_{1})(2 + l_{1} + l_{2})^{2} \rightarrow \begin{array}{c} \partial \hat{\pi}_{1} / \partial l_{1} < 0 \text{ for all } l_{1} \in [0, l_{2}) \\ \partial \hat{\pi}_{2} = \frac{1}{18} \tau (l_{2} - l_{1})(4 - l_{1} - l_{2})^{2} \end{array} \rightarrow \begin{array}{c} \partial \hat{\pi}_{1} / \partial l_{1} < 0 \text{ for all } l_{1} \in [0, l_{2}) \\ \partial \hat{\pi}_{2} / \partial l_{2} > 0 \text{ for all } l_{2} \in (l_{1}, 1] \end{array}$$

- Subgame perfect equilibrium: firms locate at the extreme points \rightarrow "maximum differentiation"
 - The dominant force here is to relax price competition.

- But this is just a particular example. Different results obtain:
 - if we remove the boundaries, 0 and 1. (Optimal locations will be -1/4 and 5/4.)
 - if we select a non-uniform distribution for the consumers.
 - if we select a different function for cost of traveling.

- General Conclusions:
 - 2 forces at play
 - Competition effect → differentiate to enjoy market power
 → drives competitors apart
 - Market size effect → meet consumers preferences
 → brings competitors together
 - Balance (equilibrium)depends on distribution of consumers, shape of transportation costs function and feasible product range
 - Lesson: With endogenous product differentiation, the degree of differentiation is determined by balancing
 - the competition effect (drives firm to \uparrow differentiation)
 - the market size effect (drives firm to \downarrow differentiation).

Vertical product differentiation

 All consumers agree that one product is preferable to another, i.e., has a higher *quality*.

• Consumers:

- Preference parameter for quality: $\theta \in [\theta, \overline{\theta}] \subseteq \mathbb{R}_+$
 - larger $\theta \rightarrow$ consumer more sensitive to quality changes
- Each consumer chooses 1 unit of 1 of the products
- Distributed uniformly on $[\underline{\theta}, \overline{\theta}]$, total mass is $M = \overline{\theta} \underline{\theta}$

• $s_i \in [\underline{s}, \overline{s}] \subseteq \mathbb{R}_+$ stands for the quality of product *i*

• Utility of consumer θ from one unit of product *i*: $u_{\theta}(s_i, p_i) = r + \theta s_i - p_i$

Key feature: If $s_2 > s_1$, then

 $u_{\theta}(s_2, p) - u_{\theta}(s_1, p) = \theta(s_2 - s_1)$ is \uparrow in θ

 \rightarrow Higher θ = stronger sensitivity to quality differences

• **Firms:** Duopolists

- Stage 1: Choose quality: s₁, s₂
- Stage 2: Choose price: p₁, p₂
- Simultaneous move in both stages
- Constant marginal cost, c = 0

- **Price stage:** Suppose $s_1 < s_2$
 - The indifferent consumer $\hat{\theta}$ is given by (if it exists): $r + \hat{\theta}s_1 - p_1 = r + \hat{\theta}s_2 - p_2$

$$\rightarrow \hat{\theta} = \frac{p_2 - p_1}{s_2 - s_1}; \qquad \qquad \theta <$$

 $<\hat{\theta}$ prefers the lower quality s_1

 $\theta > \hat{\theta}$ prefers the higher quality s_2

Compare with the endogenous sunk-costs/quality augmented Cournot:

- In that model price-quality ratio is the same for every firm; consumers are indifferent between all products.
- Here, a given consumer prefers one or the other good, depending on their sensitivity to quality. (Consumers are more heterogeneous.)

Price stage (cont'd)

• An indifferent consumer truly exists iff:

 $\underline{\theta} \leq \hat{\theta} \leq \overline{\theta} \quad \leftrightarrow \quad \underline{\theta}(s_2 - s_1) \leq p_2 - p_1 \leq \overline{\theta}(s_2 - s_1)$

Hence (assuming $s_2 > s_1$):

$$\pi_1 = \begin{cases} 0 & \text{if } p_1 > p_2 - \underline{\theta}(s_2 - s_1), \\ p_1\left(\frac{p_2 - p_1}{s_2 - s_1} - \underline{\theta}\right) & \text{if } \underline{\theta}(s_2 - s_1) \le p_2 - p_1 \le \overline{\theta}(s_2 - s_1), \\ p_1\left(\overline{\theta} - \underline{\theta}\right) & \text{if } p_1 < p_2 - \overline{\theta}(s_2 - s_1). \end{cases}$$

• No discontinuity because $p_1 = p_2 - \overline{\theta}(s_2 - s_1) \rightarrow \pi_1 = p_1(\overline{\theta} - \underline{\theta})$

• Moreover, π_1 is increasing in p_1 up to this point.

• Price stage (cont'd)

- The quadratic part $p_1\left(\frac{p_2-p_1}{s_2-s_1}-\underline{\theta}\right)$ is maximized at $p_1(p_2) = \frac{1}{2}[p_2 - \underline{\theta}(s_2 - s_1)]$
 - This is the best response if it is positive. Otherwise, $\pi_1 = 0$ because firm 1 has no demand for any $p_1 \ge 0$, and a best response is $p_1 = 0$.

1

Vertical product differentiation (cont'd)

• **Price stage** (cont'd). Similarly:

$$\pi_2 = \begin{cases} p_2(\overline{\theta} - \underline{\theta}) & \text{if } p_1 > p_2 - \underline{\theta}(s_2 - s_1), \\ p_2\left(\overline{\theta} - \frac{p_2 - p_1}{s_2 - s_1}\right) & \text{if } \underline{\theta}(s_2 - s_1) \le p_2 - p_1 \le \overline{\theta}(s_2 - s_1), \\ 0 & \text{if } p_1 < p_2 - \overline{\theta}(s_2 - s_1). \end{cases}$$

 $\rightarrow p_2(p_1) = \frac{1}{2} [\overline{\theta}(s_2 - s_1) + p_1]$ (best response)

• Equilibrium:

 $p_{1}^{*} = \frac{1}{3} \left(\overline{\theta} - 2\underline{\theta} \right) (s_{2} - s_{1})$ $p_{2}^{*} = \frac{1}{3} \left(2\overline{\theta} - \underline{\theta} \right) (s_{2} - s_{1})$ (assuming $\overline{\theta} > 2\underline{\theta}$) (2)

 $\rightarrow\,$ Even the price of the low-quality firm increases with the quality difference!

• **Price stage** (cont'd)

Note: Suppose $\overline{\theta} \leq 2\underline{\theta}$. Set $p_2 \equiv p_2(0) = \overline{\theta}(s_2 - s_1)/2$.

$$\widehat{\theta} = \frac{p_2 - p_1}{s_2 - s_1} \le \frac{p_2}{s_2 - s_1} = \frac{1}{2}\overline{\theta} \le \underline{\theta}$$

- That is, firm 1 cannot get a positive demand even if it sets $p_1 = 0$. This makes $p_1^* = 0$ a best response.
 - Then, $p_2^* \equiv p_2(0)$ is a best response too.
- → **Conclusion:** If $\overline{\theta} \leq 2\underline{\theta}$ and $s_1 \neq s_2$, the high quality firm gets the whole market, the other firm shuts down in the price stage.
 - Henceforth, assume $\overline{\theta} > 2\underline{\theta}$, so that both firms remain active in stage 2.

- Quality stage
 - Substitute p₁^{*} and p₂^{*} from eqn (2) into stage 1 profit function:

$$\pi_1(s_1, s_2) = \frac{1}{9} \left(\overline{\theta} - 2\underline{\theta}\right)^2 (s_2 - s_1)$$
$$\pi_2(s_1, s_2) = \frac{1}{9} \left(2\overline{\theta} - \underline{\theta}\right)^2 (s_2 - s_1)$$

- Both profits \uparrow in the quality difference $s_2 s_1$.
- \rightarrow equilibrium quality choices: $s_1^* = \underline{s}$ and $s_2^* = \overline{s}$
 - The converse is also possible by symmetry in this simultaneous move game.
 - Note: Sequential quality selection would imply a first mover advantage, because of strategic substitutability. The first mover would select \overline{s} and get a higher profit as in π_2 above.

- Note that the marginal cost of quality is assumed to be 0 here. If we were to take into account the cost of producing a high quality product, optimal quality choices may not be so extreme. The general conclusion is the following:
- Lesson: In markets in which products can be vertically differentiated, the firms offer different qualities in equilibrium so as to relax price competition.

Case. VLJ industry: "Battle of bathrooms"

- Very Light Jets
 - 4 to 8 passengers, city-to-city, 60 to 90-minute trips

You are not going to have women on a plane unless it has a lavatory.

Jim Burns, Founder of Magnum Air

Vertical differentiation

Having a bathroom on board is not an issue for short trips.

> Ed lacobucci, CEO of DayJet Corp.

Adam Aircraft A700 Bigger, more expensive Has a lavatory

Eclipse 500 Less expensive No lavatory

Vertical differentiation: Entry problem revisited

- Recall Chapter 4: Quality augmented Cournot may bound the number of firms in oligopolistic markets. (Requires costly quality choice.)
- The present model predicts a limited number of firms even for costless quality choice and arbitrarily small entry costs.
 - The presence of a small entry cost creates a small economies of scale, which turns out to be sufficient to limit the number of active firms. We may even have a **natural monopoly**.
- But the equilibrium number of firms goes to ∞ as the mass of consumers $M = \theta \theta \uparrow \infty$.

Vertical differentiation: Entry problem revisited

- Formally, recall that if $\overline{\theta} \leq 2\underline{\theta}$ the low quality firm shuts down.
 - No other firm will have an incentive to enter. \rightarrow Natural monopoly.
 - More generally, it can be shown that, for arbitrarily small entry costs, the equilibrium number of active firms is the smallest integer *n* such that $\overline{\theta} \leq 2^n \theta$
 - See the book for the details.
 - Note: In contrast to the earlier model, equilibrium number of firms "slowly" $\rightarrow \infty$ as the mass of consumers, $\overline{\theta} \underline{\theta}$, goes to ∞ .

Probabilistic choice

- Discrete choice problem: Choose one among few options.
- Empirical analysis of discrete choice problems are based on the so called "random" or "probabilistic" choice models.
 - Random component is meant to capture consumer heterogeneity in tastes or quality sensitivity etc.
 - There can also be unpredictable variations in the behaviour of a given consumer.

Probabilistic choice & horizontal differentiation

- Suppose the utility of a product *i* is a random variable: $v_i \equiv \overline{v}_i + \varepsilon_i$
- $\bar{v}_i \equiv u(r, p_i)$ is the (mean) utility, including the effect of price
 - The observable part of utility that we can estimate.
- ε_i is the random part: Exogenous.
 - Think of it as a random taste parameter: For example, this can be the distance between a particular product location *i* and a randomly chosen consumer.
 - Assumption: The expected value of ε_i is 0
 - $\rightarrow E(v_i) = \overline{v}_i$. So, \overline{v}_i is the **mean** or **expected** utility from product *i*. In the "linear city" this is the utility of the consumer x = 1/2 from the product *i*

Probabilistic choice & horizontal diff. (cont'd)

- Let e_i denote the realization of $\varepsilon_i \varepsilon_i$.
- Our randomly chosen consumer selects the product *i* over *j* iff v_i > v_j, iff

$$\bar{v}_i - \bar{v}_j > e_i$$

 Thus, with two products, and assuming continuous distributions, the choice probability of *i* is:

 $\Pr(e_i \leq \bar{v}_i - \bar{v}_j) \equiv F_i(\bar{v}_i - \bar{v}_j),$

where F_i is the distribution function of $\varepsilon_i - \varepsilon_i$.

• Typically ε_1 and ε_2 are assumed to be i.i.d. with a well behaved distribution (e.g., logistic distribution).

• \rightarrow Particular functional form for $F_i(\bar{v}_i - \bar{v}_j)$ (optional: see the book)

Probabilistic choice & horizontal diff. (cont'd)

- Let α_i denote the **market share** of product *i*.
- Our first demand equation is:

$$\alpha_i = F_i(\bar{\nu}_i - \bar{\nu}_j) \tag{D1}$$

- LHS is observable, RHS is an exogenously given function of the variables \overline{v}_1 and \overline{v}_2 .
- Second demand equation decomposes \overline{v}_i :

 $\bar{v}_i = \beta x_i - \gamma p_i + \xi_i \tag{D2}$

- x_i is the vector of observed product characteristic (location, level of sugar or alcohol etc.)
- γ measures the effect of price
- ξ_i is an error term, that will be left unexplained
- Use (D1) and (D2) to estimate (β, γ) and thereby (\bar{v}_1, \bar{v}_2)

Probabilistic choice & product diff.: Final remarks

- First order conditions of the firms will also depend on the demand function/market share, which will give one more equation that depends on γ .
- If there are n products, choice probability of i will be:

 $\Pr(v_i = \max\{v_1, \dots, v_n\}) = \Pr(\bar{v}_i - \bar{v}_j \ge \varepsilon_j - \varepsilon_i \ \forall j \neq i)$

- This can be computed as a function of $(\bar{v}_1, ..., \bar{v}_n)$ given the joint distribution of $(\varepsilon_1, ..., \varepsilon_n)$.
- In case of **vertical differentiation**, we need an additional random variable θ_k that represents the quality-sensitivity of consumer k. (The main methodological ideas are similar.)

Review questions

- What makes firms locate close to each other in the product space? And what does it make them differentiate themselves from their competitors?
- Explain the main difference between horizontal and vertical product differentiation.
- Determine if the following statements are true or false. Explain your answer.
 - In horizontal product differentiation, firms always select most extreme positions.
 - In a model of vertical product differentiation with sequential moves, the firm that selects the quality first is advantageous.
 - The number of firms in an industry with constant marginal costs necessarily converges to infinity as the entry cost goes to zero.