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and the Simplex Method
David Gale

T
his exposition of linear programming
and the simplex method is intended
as a companion piece to the article
in this issue on the life and work of
George B. Dantzig in which the impact

and significance of this particular achievement
are described. It is now nearly sixty years since
Dantzig’s original discovery [3] opened up this
whole new area of mathematics. The subject is
now widely taught throughout the world at the
level of an advanced undergraduate course. The
pages to follow are an attempt at a capsule pre-
sentation of the material that might be covered in
three or four lectures in such a course.

Linear Programming
The subject of linear programming can be defined
quite concisely. It is concerned with the problem
of maximizing or minimizing a linear function
whose variables are required to satisfy a system
of linear constraints, a constraint being a linear
equation or inequality. The subject might more
appropriately be called linear optimization. Prob-
lems of this sort come up in a natural and quite
elementary way in many contexts but especially
in problems of economic planning. Here are two
popular examples.

The Diet Problem

A list of foods is given and the object is to pre-
scribe amounts of each food so as to provide a
meal that has preassigned amounts of various nu-
trients such as calories, vitamins, proteins, starch,
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etc. Further, each food has a cost, so among all
such adequate meals the problem is to find one
that is least costly.

The Transportation Problem

A certain good, say steel, is available in given
amounts at a set of m origins and is demanded in
specified amounts at a set of n destinations. Cor-
responding to each origin i and destination j there
is the cost of shipping one unit of steel from i to
j . Find a shipping schedule that satisfies the given
demands from the given supplies at minimum
cost.

Almost all linear programming applications,
including these examples, can be motivated in the
following way. There is a given set of goods. For
the diet problem these are the various nutrients.
For the transportation problem there are m + n
goods, these being steel at each of the origins
and destinations. There is also a set of processes
or activities which are specified by amounts of
the goods consumed as inputs or produced as
outputs. In the diet problem, for example, the
carrot-consuming activity c has an output of c1

units of calories, c2 units of vitamin A, etc. For the
transportation problem the transportation activ-
ity tij has as input one unit of steel at origin i and
as output one unit of steel at destination j . In gen-
eral, an activity a is column vector whose positive
entries are outputs, negative entries inputs. These
vectors will be denoted by boldface letters. It is
assumed that activity aj may be carried out at any
nonnegative level xj . The constraints are given
by another activity vector b, the right-hand side,
which specifies the amounts of the different goods
that are to be produced or consumed. For the diet
problem it is the list of amounts of the prescribed
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nutrients. For the transportation problem it is the
given supplies and demands at the origins and
destinations. Finally, associated with each activity
aj is a cost cj . Given m goods and n activities aj

the linear programming problem (LP) is then to
find activity levels xj that satisfy the constraints
and minimize the total cost

∑
j cjxj . Alternatively,

c may be thought of as the profit generated by ac-
tivity a, in which case the problem is to maximize
rather than minimize

∑
j cjxj .

The simplex method is an algorithm that finds
solutions of LPs or shows that none exist. In the
exposition to follow we will treat only the special
case where the constraints are equations and the
variables are nonnegative, but the more general
cases are easily reduced to this case.

The Simplex Method
In the following paragraphs we describe the sim-
plex algorithm by showing how it can be thought
of as a substantial generalization of standard
Gauss-Jordan elimination of ordinary linear al-
gebra. To gain intuition as to why the algorithm
works, we will refer to the linear activity model
of the previous section. Finally we will mention
some interesting discoveries in the analysis of
the algorithm, including a tantalizing unsolved
problem.

Pivots and Tableaus

The basic computational step in the simplex algo-
rithm is the same as that in most of elementary
linear algebra, the so-called pivot operation. This
is the operation on matrices used to solve systems
of linear equations, to put matrices in echelon
form, to evaluate determinants, etc.

Given a matrix A one chooses a nonzero pivot
entry aij and adds multiples of row i to the other
rows so as to obtain zeros in the jth column. The
ith row is then normalized by dividing it by aij .
For solving linear equations a pivot element can
be any nonzero entry. By contrast, the simplex
method restricts the choice of pivot entry and is
completely described by giving a pair of simple
rules, the entrance rule that determines the pivot
column j and the exit rule that determines the
pivot row i (in theory a third rule may be needed
to take care of degenerate cases). By following
these rules starting from the initial data the algo-
rithm arrives at the solution of the linear program
in a finite number of pivots. Our purpose here is
to present these rules and show why they work.

We shall need one other concept.
Definition. The tableau X of a set of vectors
A = {a1,a2, . . . ,an} with respect to a basis
B = {b1,b2, . . . ,bm} is them× nmatrix

a1 a2 · · · aj · · · an

b1 x11 x12 · · · x1j · · · x1n
b2 x21 x22 · · · x2j · · · x2n
...

...
...

...
...

...
...

bi xi1 xi2 · · · xij · · · xin
...

...
...

...
...

...
...

bm xm1 xm2 · · · xmj · · · xmn

where xij is the coefficient of bi in the expression
for aj as a linear combination of the bi .

In matrix terms, X is the (unique) matrix satis-
fying

(1) BX = A.
(Symbols A,B are used ambiguously to stand
either for a matrix or the set of its columns.)

It will often be useful to include the unit vec-
tors ei in the tableau in which case it appears as
shown below.

e1 e2 · · · ej · · · em

b1 y11 y12 · · · y1j · · · y1m
b2 y21 y22 · · · y2j · · · y2m
...

...
...

...
...

...
...

bi yi1 yi2 · · · y ij · · · yim
...

...
...

...
...

...
...

bm ym1 ym2 · · · ymj · · · ymm

a1 a2 · · · aj · · · an

x11 x12 · · · x1j · · · x1n
x21 x22 · · · x2j · · · x2n

...
...

...
...

...
...

...
xi1 xi2 · · · xij · · · xin

...
...

...
...

...
...

...
xm1 xm2 · · · xmj · · · xmn

Note that from (1), Y = {yij} is the solution of
BY = I so Y = B−1.Multiplying (1) on the left by Y
gives the important equation

(2) YA = X.
It is easy to verify that if one pivots on en-

try xij , one obtains a new matrix X′ that is the
tableau with respect to the new basis in which aj

has replaced bi .

a1 a2 · · · aj · · · an

b1 x′11 x′12 · · · 0 · · · x′1n
b2 x′21 x′22 · · · 0 · · · x′2n
...

...
...

...
...

...
...

aj x′i1 x′i2 · · · 1 · · · x′in
...

...
...

...
...

...
...

bm x′m1 x′m2 · · · 0 · · · x′mn
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The simplex method solves linear programs
by a sequence of pivots in successive tableaus,
or, equivalently, by finding a sequence of bases,
where each basis differs from its predecessor by a
single vector.

Solving Linear Equations

We start by showing how to solve systems of lin-
ear equations using the language of pivots and
tableaus. Our fundamental result is the following:
Theorem 1. Exactly one of the following systems
has a solution:

(3) Ax = b

or

(4) yTA = 0T , yTb = 1.

(Again, boldface letters are column vectors and are
converted to row vectors using the superscript T .)

Note that rather than giving complicated con-
ditions for (3) not to be solvable this formulation
puts the solvable and unsolvable case on an equal
footing. This duality is an essential element of the
theory, as will be seen.

Geometric Interpretation

If (3) has no solution this means that b does not lie
in the linear subspace generated by the aj . In that
case there is a vector y orthogonal to the aj but not
to b.

We shall continue to present such geometric
pictures as aids to intuition but the mathematical
arguments will not depend on these “pictures”.

It is immediate that (3) and (4) cannot both
hold since multiplying (3) by yT and (4) by x would
imply 0 = 1. The nontrivial part is to show that
either (3) or (4) must hold. We do this by giving an
algorithm that in at mostm pivots finds a solution
to either (3) or (4).

The initial tableau consists of the matrix A
together with the right-hand side b all preceded
by the identity matrix I. It is represented schemat-
ically in the form below.

{bi}
{ei}
[ I

{aj}
A

{b}
b ]

(The symbols like
{
ei
}
, {aj} in curly brackets are

the row and column headings of the tableau.)
We proceed to try replacing the ei in order by

some aj . The tableau at any stage has the form

{bi}
{ei}
[ Y

{aj}
X

{b}
u ]

There are now two possibilities.
Case I. All of the unit vectors ei can be replaced

by some of the aj . Then a solution of (3) can be
read off from the vector u in the b-column of the
tableau above. Namely, each component of u, say

ui , is the value of a variable xji whose correspond-
ing column aji = bi . Every xj whose corresponding
column is not in the current basis has the value
zero.

Case II. In trying to replace ek there is no avail-
able pivot because xkj = 0 for all j .

(i) If in addition uk = 0, then leave ek in the ba-
sis and go on to replace ek+1.

(ii) If uk ≠ 0, then the kth row yk of Y gives
a solution of (4). To see this, note that from (2)[
Y
] [
A b

]
=
[
X u

]
. Since the kth row of X is

zero, we get ykA = 0, whereas ykb = uk ≠ 0, so
yk/uk solves (4).

The algebra becomes considerably more com-
plicated if one requires the solutions of (3) to be
nonnegative. In this case we have the following
existence theorem (known as Farkas’s Lemma):
Theorem 2. Exactly one of the following systems
has a solution.

(5) Ax = b, x ≥ 0

or

(6) yTA ≤ 0T , yTb > 0.

Again it is not possible for both systems to
have solutions since multiplying (5) by yT gives
yTAx = yTb > 0 whereas multiplying (6) by x
gives yTAx ≤ 0.

Geometric Interpretation

Equation (5) says that b lies in the convex cone
generated by the columns aj of A. If b does not
lie in this cone, then there is a “separating hyper-
plane” whose normal makes a non-acute angle
with the aj and an acute angle with the vector b.

The simplex method finds a solution of either
(5) or (6) in a finite number of pivots. However,
there is no useful upper bound on the number of
pivots that may be needed as we shall see shortly.

We may assume to start out that the vector b
is nonnegative (if not, change the signs of some of
the equations).
Definition. A basis B will be called feasible (strongly
feasible) if b is a nonnegative (positive) linear com-
bination of vectors of B. This is equivalent to the
condition that the b column u of the tableau is
nonnegative (positive).

Imitating the algorithm of the previous section
we start from the feasible basis {ei} of unit vectors
and try to bring in the {aj} by a sequence of pivots
that maintain feasibility, but to do this the pivot
rule of the previous section must be restricted.

Suppose aj is to be brought into a new feasible
basis. Then in order for the new basis to be feasi-
ble the basis vector it replaces must satisfy the fol-
lowing easily derived condition.
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Exit Pivot Rule

The pivot element xij must satisfy

(i) xij > 0,
(ii) ui/xij ≤ uk/xkj for all k with xkj > 0.
Because of the above restriction it is no longer

possible to simply replace the basis vectors ei one
at a time as in the previous section. Some further
rule for choosing the pivot column must be given.

We will postpone the proof of Theorem 2 as it
will be shown to be a special case of a much more
general theorem, which we now describe.

The Standard Minimum Problem
We consider the following important special case
of a linear programming problem.

Given anm-vector b, an n-vector cT and anm×
nmatrix A, find an n-vector x so as to

(7)

minimize cTx

subject to Ax = b

x ≥ 0.

Corresponding to this problem (and using ex-
actly the same data) is a dual problem, find an m-
vector yT so as to

maximize yTb

subject to yTA ≤ cT .(8)

Terminology

The linear function cTx and yTb are called the
objective functions of (7) and (8), respectively. The
vectors x,y that solve these problems are called
optimal solutions; the numbers cTx and yb are
optimal values.

Let X and Y be the sets (possibly empty) of all
vectors that satisfy the constraints of (7) and (8),
respectively. Such vectors are said to be feasible.

Key Observation

If x ∈ X, yT ∈ Y, then yTb ≤ cTx.
Proof. Multiply Ax = b by yT and yTA ≤ cT by x.

An important consequence of this observation
is
Corollary. If x ∈ X and y ∈ Y satisfy yTb = cTx,
then x and y are optimal solutions, and the num-
bers yTb=cTx are optimal values for their respec-
tive problems.

The converse of this fact makes up the
Fundamental Duality Theorem. The dual prob-
lems above have optimal solutions x,yT if and
only if X and Y are nonempty in which case the
optimal values cTxand yTb are equal.

Historical Note

The first explicit statement of the duality theorem
is due to von Neumann [7] in a manuscript that
was privately circulated but never formally pub-
lished in his lifetime. Moreover it has been hard to

verify the validity of the von Neumann proof. The
first formally published proof is due to Gale, Kuh,
and Tucker [4].

To see how Theorem 2 is a special case of the
duality theorem we take [I A b] as the given ini-
tial tableau of a standard minimum problem and
the vector cT = (1, ..,1,0, ...,0) whose first m en-
tries are 1, the rest 0, as the objective function.
The set X is nonempty since it contains the non-
negative vector (b1, .., bm,0, ..,0), and the set Y
is nonempty since it contains the zero vector. If
the optimal value is zero, then a subvector of the
optimal solution x solves (5). If the optimal value
is positive, then the dual optimal vector y solves
(6).

We will now see how the simplex method solves
problems (7), (8) and gives a constructive proof of
the duality theorem.

As a first step we incorporate the objective
function cTx as the 0th row of the tableau. That is,
we define the augmented column vector âj to be
(−cj ,aj), and we introduce the 0th unit vector e0.
The augmented initial tableau is then,

e0

{ei}
[ e0 {ei} {âj} b̂

1 0 −cT 0
0 I A b

]
We may assume that we have found an initial fea-
sible basis, by applying the simplex method to the
nonnegative solution problem (5), (6) as described.
Then with respect to the general augmented basis
{e0,b̂1, . . . ,b̂m} the tableau has the form below.

e0

{b̂i}
[ e0 {ei} {âj} b̂

1 yT zT w
0 Y X u

]
Note that by definition of the tableau,we0+

∑
i uib̂i

= b̂ so for the 0th entry we have w −
∑
i uici = 0,

so w =
∑
i uici , which is the value of the objective

function for the basic feasible basis {bi}.
Also from the tableau zj =

∑
i xijci − cj . This

number compares the cost associated with activ-
ity vector aj to that of the corresponding linear
combination of the basis vectors bi . If zj is posi-
tive it means that one could reduce the total cost
by bringing the vector aj into the next basis. This
leads to the following two important observations:

I. If the row zT is nonpositive, then u can be
extended to a solution x of (7) and yT solves (8).
Namely, using (2) again we have[

1 yT

0 Y

][
−cT 0
A b

]
=
[

zT w
X u

]
so −cj + yTaj = zj ≤ 0. Hence yTA ≤ cT so yT

satisfies the dual constraints. Similarly we have
yTb = w = cTx, so from the corollary above, the
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Duality Theorem is verified.

II. If for some j we have zj > 0 and xij ≤ 0 for
all i, then problem (7) has no minimum, for from
the tableau we have aj −

∑
i xijbi = 0; and since the

xij ≤ 0, we have

λ(âj −
∑
i
xij b̂i)+

∑
i
xib̂i = b

giving a new feasible (nonnegative) solution for
any λ > 0. The corresponding change in the objec-
tive function is λ(cj −

∑
i xijci) = −λzj ; so since

zj > 0 the function has no minimum.
In view of I above, one is looking for a feasible

solution with z nonpositive, so the following pivot
rule suggests itself.

Entrance Pivot Rule

Bring into the basis any column âj where zj is pos-
itive.

Note that as described the second pivot rule
may, in general, require making a choice among
many possible positive zj . A natural choice would
be for example to choose the column with the
largest value of zj , a choice originally suggested
by Dantzig.

The two pivot rules completely describe the
simplex algorithm. If for some j , zj is positive and
some xij is positive, then bring aj into the basis
(by a pivot). It remains to show that eventually
either I or II will occur. The argument is simple if
we make the following

Nondegeneracy Assumption

Every feasible basis is strongly feasible.
Note if this were not the case, then b would be

a positive linear combination of fewer than m of
the vectors aj , a degenerate situation. Although
the degenerate case would seem (on mathematical
grounds) to be rare, this is not so in practice.

Suppose xij is the (positive) pivot. Then after
pivoting w ′ = w − zjui/xij < w since ui > 0 from
nondegeneracy, so the value of the objective func-
tion decreases with each pivot. This means that
no basis can recur (since the basis determines the
objective value), and since there are only finitely
many bases, the algorithm must terminate in
either state I or II.

If the nondegeneracy assumption is not satis-
fied some further argument is necessary. Indeed,
examples have been constructed by Hoffman [5]
(for one) using the Dantzig pivot choice rule which
can lead to “cycling,” meaning the sequence of
feasible bases recurs indefinitely. It turns out,
however, that the following simple rule due to
Bland [1] guarantees that no basis will recur.

Bland’s Pivot Selection Rule

Among eligible entering vectors choose the one
with lowest index and let it replace the eligible
basis vector with lowest index.

While the condition is simple to state, the
proof that it avoids cycling is quite subtle. More-
over, it is not as efficient as the customary (Dant-
zig) pivot choice rule.

Finally, there is a natural economic interpre-
tation of the dual problem. In the model of goods
and activities, the vector yT = (y1,.., ym) can be
thought of as a price vector where yi is the price of
one unit of the ith good. Then yTaj is the revenue
generated by operating activity aj at unit level.
The condition of dual feasibility, yTaj − cj ≤ 0
states that profit (revenue minus cost) cannot be
positive. This is an economically natural require-
ment, for if an activity generated positive profits
producers would want to operate it at arbitrarily
high levels and this would clearly not be feasible.
Duality then says that prices are such that the
price vector yTmaximizes the value yTb of the
right-hand side activity b subject to the condition
of no positive profits.

Some Properties of the Simplex Method
Since its creation by Dantzig in 1947, there has
been a huge amount of literature on variations
and extensions of the simplex method in many
directions, several devised by Dantzig himself.
We will mention here only one of these, revolv-
ing around the question of the number of pivot
steps required to solve an LP in the worst case.
Based on a vast amount of empirical experience,
it seemed that an m × n program was typically
solved in roughly 3m/2 pivots. However, in 1972,
Klee and Minty [6] gave an example of an m × 2m
standard problem that using the Dantzig choice
rule required 2m − 1 pivots. To appreciate the ex-
ample, first consider the matrix A consisting of
them unit vectors ei andm vectors aj = ej where
the right-hand side is e, the vector all of whose
entries are one. By inspection, (see for example
the tableau below) the set of feasible solutions
X decomposes into the direct product of m unit
intervals, thus, it is a unitm-cube.

{ei} 1 0 0
0 1 0
0 0 1

{aj}
1 0 0
0 1 0
0 0 1


b 1
1
1


It is easy to see that every feasible basis, thus

every vertex of the cube, must contain either ai or
ei , but not both, for all i. This property will be pre-
served if the ai are slightly perturbed. By a clever
choice of this perturbation and a suitable objec-
tive function, the authors show that the Dantzig
pivot rule causes the algorithm to visit all of the
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2m vertices following a well known Hamiltonian
path on them-cube.
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Figure 1. A Hamiltonian path on a 3-cube.

This means, for example, that the vector a1 enters
the basis on the first pivot, stays in the basis for
one pivot, then exits and stays out for one pivot,
then reenters and stays, then exits and stays out,
etc. throughout the computation.

So we know that in the worst case the simplex
method may require an exponential number of
pivots, although, as mentioned earlier, no natu-
rally occurring problem has ever exhibited such
behavior. There are also results on the expected
number of pivots of a “random” LP.

Since the Klee-Minty example shows that it
is possible for the simplex algorithm to behave
badly, it is natural to ask whether there may be
some other pivoting algorithms that are guaran-
teed to find an optimal solution in some number
of pivots bounded, say, by a polynomial in n.
Let us first consider a lower bound on the num-
ber of pivots. If the initial feasible basis is A =
{a1, . . . ,am} and the optimal basis is a disjoint set
B = {b1, ..,bm} then clearly it will require at least
m pivots to get from A to B. The very surprising
fact is that if the set X of feasible solutions is
bounded, then in all known examples it is possi-
ble to go from any feasible basis to any other in
at most m pivots. Recall that the set X is an m-
dimensional convex polytope whose vertices are
the feasible bases. The above observation is equiv-
alent to the statement that any two vertices of this
polytope are connected by an edge path of at most
m edges. The conjecture originally posed by War-
ren Hirsch has been proved by Klee and Walkup
through dimension 5 but remains unresolved in
higher dimensions.

For Dantzig this “Hirsch conjecture” was es-
pecially intriguing since a constructive proof of
the conjecture would have meant that there might
be an algorithm that solves linear programs in at
mostm pivots. However, even if such an algorithm
existed, it might be that the amount of calculation
involved in selecting the sequence of pivots would
make it far less computationally efficient than
the simplex method. Indeed this remarkable algo-
rithm and its many refinements remains to this

day the method of choice for solving most linear
programming problems.
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